

INDIVIDUALIZED - EFFICIENT - QUALITY-CONSCIOUS

Magnetic and Precision Clamping Systems

power. people. passion.

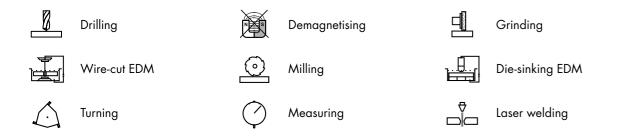
INDIVIDUALIZED - EFFICIENT - QUALITY-CONSCIOUS

Magnetic and Precision Clamping **Systems**

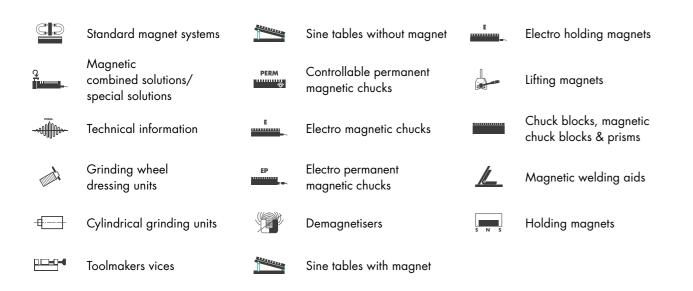
power. people. passion.

GENERAL INFORMATION USING THE CATALOGUE AND EXPLANATION OF ICONS

Search options


- 1. Product-specific selection, e.g. controllable permanent magnets or electro magnets, but also demagnetising or pole plates: see table of contents.
- 2. Properties-based selection: see page 35, 40 41, 60, 80 82.

Selecting the right magnetic chuck in three steps


- 1. Which type of processing? For example, only certain types are suitable for milling (also refer to the introduction of the individual chapters or to the icons for suitable machining methods on the individual product pages).
- Workpiece dimensions, most common, especially smallest, thinnest. 2. This provides the selection of the pole pitch (see individual chapters and data sheets).
- Magnet size, accuracy, power supply and cycle length (also refer to chapter 1.1). 3.

Other influences on magnetic forces can be found in chapter 1.4.

Icons for suitable machining methods

Icons for magnet and precision systems

4

Some chapters start with technical information and application examples. A summary of the fundamentals of magnet technology and practical experiences can be found in chapter 1.4, offering additional information on effective use.

In chapters 1.2.2, 1.2.3 and 1.2.5, the magnet sizes are allocated to the suitable control types and control units. This are not included in the scope of delivery of the magnets and must be ordered separately.

General tolerances, unless stated otherwise

- Length dimensions as per DIN ISO 2768-1-m
- Shape and position as per DIN ISO 2768-2-K
- Metric ISO thread as per medium tolerance class

Holding force, unless stated otherwise

The specific holding force data in the chapters as holding force per workpiece area in N/cm² are rated values! They refer to a 100 mm long, 100 mm wide and 40 mm high test workpiece made of steel 1.0037 with polished surface or measurement with holding force tester SAV 486.40. If other conditions apply to the use case, the stated rated holding forces no longer apply.

The rated holding forces in N for electro holding magnets and permanent electro holding magnets apply for 100 % loading of the contact surface and for optimum holding thickness for a polished workpiece made of steel 1.0037. As the material of your products is also very important, please contact us for advice. Other influences on magnetic holding forces are summarised in chapter 1.4.

Information about electrical equipment

- The relative duty cycle (ED) in % refers to a cycle time of 10 min, unless stated otherwise.
- Electro magnetic chucks (chapter 1.2.2) are designed for a 100 % duty cycle.
- Electropermanent magnetic units are designed for a minimum cycle time of three minutes. If you require shorter cycle times, please contact us for advice.

Technical information

Further technical development reserved. No liability is accepted for misprints and errors. We are grateful for any information about these.

Copyright

Reprinting, also in parts, permitted only with express consent from SAV GmbH Nuremberg. All rights reserved, including photomechanical reproduction and storage in electronic media. Commercial use of texts and figures is only permitted upon agreement with the publisher, SAV GmbH Nuremberg.

Last updated

March 2023

SAV

CONTENTS

		1.	MAGNET SYSTEMS	32
	5	1.1	Selection criteria by magnet principles	34
	3	1.2	Standard magnet systems	36
I	PERM T	1.2.1	Permanent magnetic chucks	38
a	E	1.2.2	Electro magnetic chucks	58
	EP	1.2.3	Electro permanent magnetic chucks	78
		1.2.4	Precision sine tables with magnet	128
I		1.2.5	Top plates, magnetic clamping blocks and accessories	144
ŝ	E	1.2.6	Electro holding magnets	156
		1.2.7	Lifting magnets	164
		1.2.8	Demagnetisers and accessoires	170
		1.2.9	Magnetic welding aids	176
	S N S	1.2.10	Small magnets	184
ç	3			
	-	1.3	Special magnet solutions	212
		1.3 1.3.1	Special magnet solutions Criteria for combined solutions	
				214
		1.3.1	Criteria for combined solutions	214 215
		1.3.1 1.3.2	Criteria for combined solutions.	214 215 228
-		1.3.1 1.3.2 1.3.3	Criteria for combined solutions. Combined solutions. Special solutions for milling.	214 215 228 238
		1.3.1 1.3.2 1.3.3 1.3.4	Criteria for combined solutions. Combined solutions. Special solutions for milling. Special solutions for milling railway points	214 215 228 238 242
		1.3.1 1.3.2 1.3.3 1.3.4 1.3.5	Criteria for combined solutions. Combined solutions. Special solutions for milling. Special solutions for milling railway points. Special solutions for precision milling.	214 215 228 238 242 244
		1.3.1 1.3.2 1.3.3 1.3.4 1.3.5 1.3.6	Criteria for combined solutions. Combined solutions. Special solutions for milling. Special solutions for milling railway points. Special solutions for precision milling. Special solutions for precision milling.	214 215 228 238 242 244 247
		1.3.1 1.3.2 1.3.3 1.3.4 1.3.5 1.3.6 1.3.7	Criteria for combined solutions. Combined solutions. Special solutions for milling. Special solutions for milling railway points. Special solutions for precision milling. Special solutions for linear guideways. Special solutions with swivel bridge and index table	214 215 228 238 242 244 247 248
		1.3.1 1.3.2 1.3.3 1.3.4 1.3.5 1.3.6 1.3.7 1.3.8	Criteria for combined solutions. Combined solutions. Special solutions for milling. Special solutions for milling railway points. Special solutions for precision milling. Special solutions for linear guideways. Special solutions for linear guideways. Special solutions with swivel bridge and index table Special solutions for precision sine tables.	214 215 228 238 242 244 247 248 253
-		1.3.1 1.3.2 1.3.3 1.3.4 1.3.5 1.3.6 1.3.7 1.3.8 1.3.9	Criteria for combined solutions. Combined solutions. Special solutions for milling. Special solutions for milling railway points. Special solutions for precision milling. Special solutions for linear guideways. Special solutions with swivel bridge and index table Special solutions for precision sine tables. Special solutions for precision sine tables. Special round magnets for grinding and hard turning.	214 215 228 238 242 244 247 248 253 265

	1.4	Technical information on magnet systems and lifting magnets	268
	1.4.1	Fundamental physics of magnetic workholding technology	270
	1.4.2	Permanent magnet materials	273
	1.4.3	Magnetic workholding devices	276
	1.4.4	Rated holding force, displacement force, pole pitch	277
	1.4.5	Influences on the magnetic holding force.	279
	1.4.6	Maximum cutting depths for hard turning	299
	1.4.7	Maximum rotational speeds for circular magnets	300
	1.4.8	Lifting capacity of lifting magnets/performance diagrams	301
	1.4.9	Demagnetising	302
	1.4.10	Health and safety when working with magnetic clamping technology and fields	305
	1.4.11	Technical information on small magnets and holding magnets	307
	1.4.12	Technical explanations and specialist terms for magnet technology	310
	2.	DRESSING AND WORKHOLDING SYSTEMS FOR GRINDING	312
	2.1	Grinding wheel dressing units	314
	2.2	Precision cylindrical grinding units	322
	3.		332
	3.1	Standard (toolmakers vices and sine tables without magnet)	334
Ē	3.2	Special solutions (fixture construction)	342
	4.		350
Þ	4.1	Special solutions for circular chucks	352
	5.	GENERAL INFORMATION	362

8

ABOUT SAV

 $S \wedge V$

PREFACE BY DR. STEFAN HAMM

" Dear customers

Magnet systems, rotary and stationary workholding – our areas of competence show what SAV is capable of and what we stand for: customer-focused, fully developed and future-proof solutions. We develop, we manufacture, we deliver workholding and automation systems and we are focused on solutions. This becomes evident in our tried and tested standard systems and in the special solutions, which we tailor to customer requirements.

the use of workholding systems.

Let SAV convince you!

mill J

DR. STEFAN HAMM CEO OF SAV GMBH

To ensure that you can find the right solution from us for your requirements, we merged our competences under the umbrella of SAV GmbH in 2016, efficiently bundling our know-how. This allows us to supply everything from a single source, no matter for which area of competence, no matter for which industry. Trained and experienced SAV experts ensure the highest quality standards at our three German sites - "made in Germany". Our motto is: We deliver on our promises!

Especially in the times of Industry 4.0 and the networking of production chains, we need solutions with a vision and the highest level of expertise for processes. With our 40 years of experience in the manufacturing of intelligent workholding systems and automation solutions, we are the right partner for optimising your industrial manufacturing processes with

Our customers' success is the absolute priority in everything we do. With our long-standing experience in terms of material properties, different workpiece geometries and handling applications, we can guarantee

- Quality, operational reliability and economic efficiency

Application-based capacity for maximum performance

 Flexibility based on in-house development and manufacturing competence

Minimal chucking and set-up times

Automation and efficient combined solutions

WE HAVE HIGH **REQUIREMENTS.** FOR OURSELVES.

14

OUR VALUES

OUR OBJECTIVES

CREATING GRIPPING SOLUTIONS TOGETHER.

Our daily actions are based on values which shape our corporate culture and the way we interact with one another: The relationships with our customers are based on cooperation. At SAV, we build our partnerships for the long term. When we negotiate contracts and prices, we are open, objective and fair. One thing is particularly important to us: Of course these values also apply to our employees

We concentrate on the essential aspects. Therefore, we at SAV set ourselves objectives which ensure efficient processes and maximum customer benefit.

... reduces complexity.

handling tasks.

... increases efficiency.

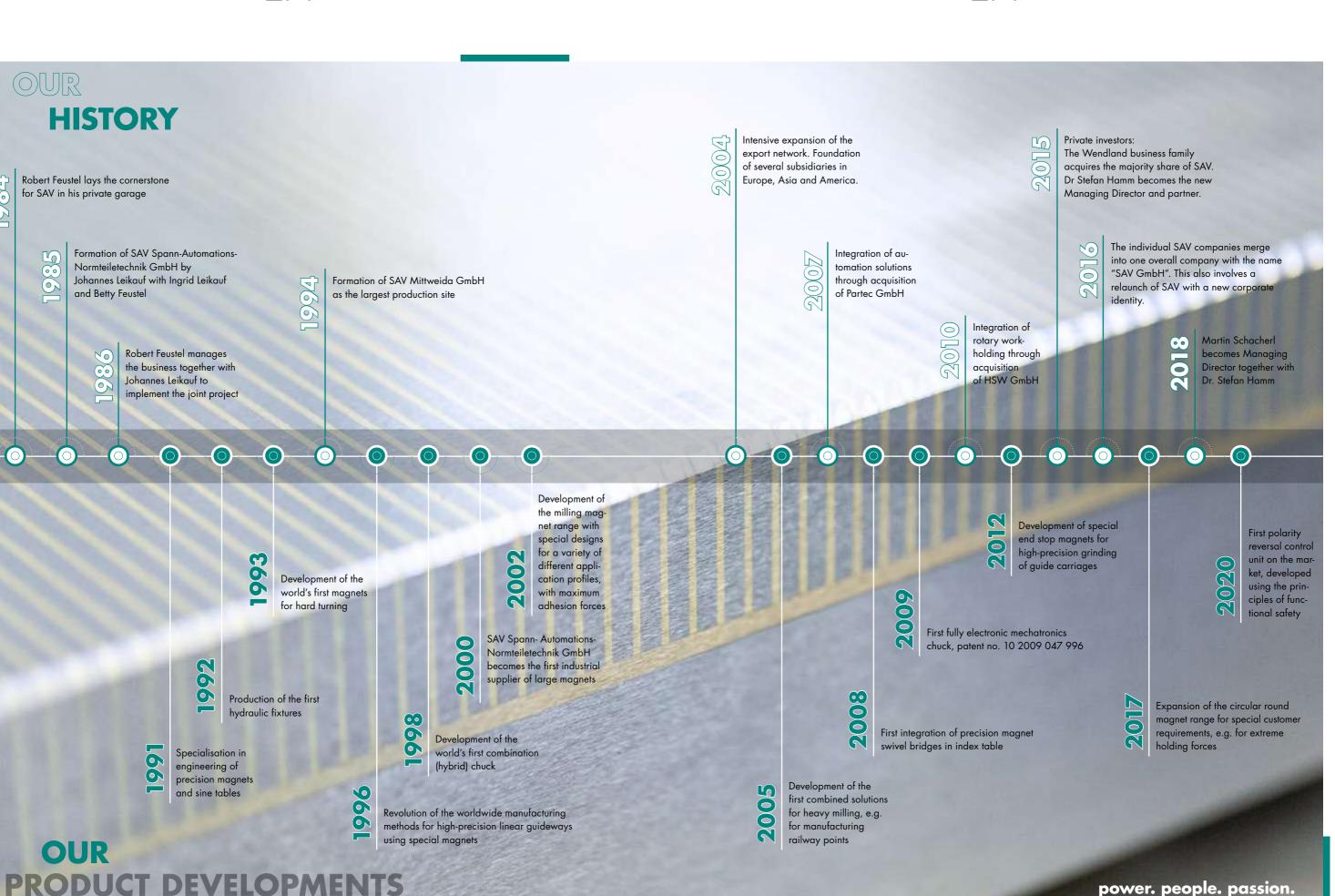
Because we are your solution provider for all workholding technology and process requirements, including automated system solutions.

... reduces costs.

fixtures and individual system solutions.

... increases safety.

Because we are your one-stop provider for the complete workpiece handling process.


FOCUSED ON IDEAL RESULTS

Because we are your contact for all workholding and

Because we offer you intelligently combined workholding

S/V

0

 $\subseteq \mathbb{A}$

power. people. passion.

SAV stands for quality "made in Germany"

In Germany, our manufacturing sites are located in Nuremberg, Mittweida and Göppingen.

SAV GmbH | Nuremberg Gundelfinger Straße 8 90451 Nuremberg Germany

SAV GmbH | Göppingen Toräcker 5 73035 Göppingen Germany

SAV | Memmingen Luitpoldstr. 32 . 87700 Memmingen Germany

Hotline: +49 911 94 83 - 0

Email: info@sav.de

Homepage: www.sav.de

SAV | France 196 Rue Louis Armand 73800 Montmelian France

Hotline: +33 04 79 70 11 28

Email: info@savfrance.fr

Homepage: www.savfrance.fr

SAV | POLSKA SP Z O.O.Ul.

Fordonska 27A 85-719 Bydgoszcz Poland

Hotline: 52 321 91 40, 695 266 855 Email: info@sav-polska.pl Homepage: www.sav-polska.pl

Service point

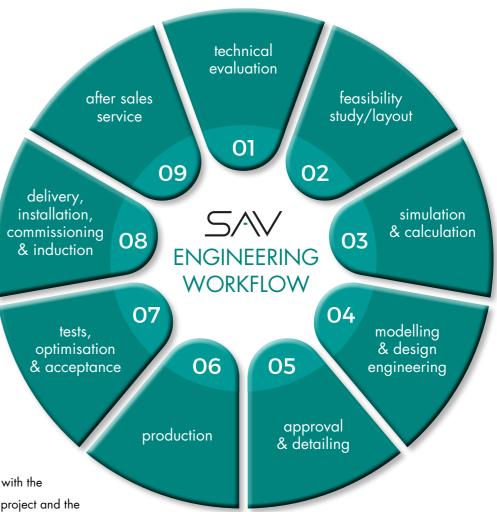
Asia Pacific

We focus on solutions

... and bring together what is required for reliable workpiece handling and workholding processes:

- Fast processing and quality
- Efficiency and precision
- Customisation and automation
- Reliability and creativity

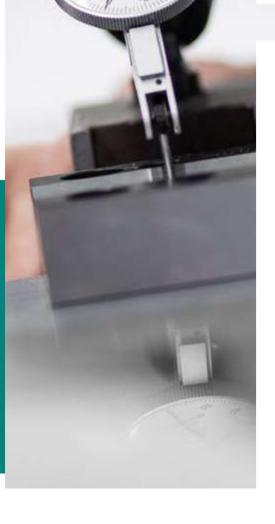
We see solutions where others see contradictions. True challenges are one of our specialities.


S/V

- Support during the entire product development phase – from the initial idea to after sales service

OUR WORKFLOW

SAV ENGINEERING WORKFLOW


WE MAKE MORE OUT **OF YOUR IDEAS**

As an expert for magnets, workholding and automation, we are ONE contact for the overall process: At our three German centres of excellence, we offer you the complete range of options for taking your project to success efficiently. Whether you want to order quality products from the standard range or are looking to develop a custom solution for your specific requirements: We are by your side, from the initial idea to successful implementation – and beyond. Cost transparency from the outset and many decades of engineering experience included.

Every planning phase starts with the technical evaluation of your project and the Sales department. During the subsequent design engineering phase, our experts turn theory into practice and work out all relevant details until your solution finally becomes reality in manufacturing. For us, the engineering process does not end with successful commissioning and induction: Our extensive after sales service offers customers long-term added value.

Through continuous exchange with our customers, we have developed our competences over a period of 40 years with new challenges around every corner.

Our motivation: power. people. passion.

" ONE CONTACT FOR THE ENTIRE **PROCESS!**

S/V

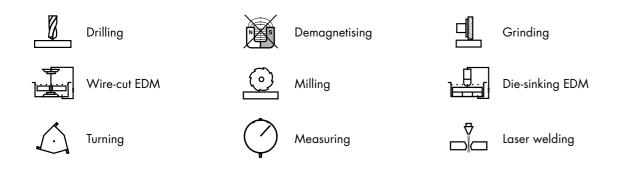
OUR FIELDS OF WORK

 $S \wedge V$

special solutions.

24

OUR APPLICATIONS ARE AS VARIED AS WE ARE


Our expert knowledge is broad as well as deep: Magnet and precision systems, stationary and rotary workholding as well as automation solutions are among the core competences of SAV, which we offer as standard versions and as customised

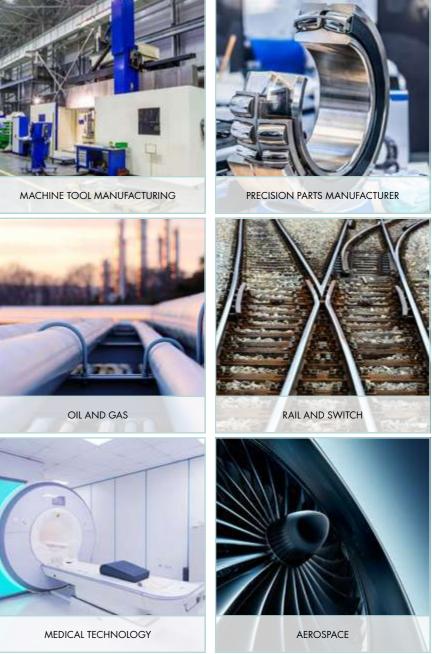
OUR SOLUTIONS FOR MACHINING PROCESSES

PRECISE, RELIABLE, FLEXIBLE -FOR ALL MACHINING PROCESSES

We stand for variety, which is why SAV high-performance magnets are used in all areas of workholding. Because we combine our development and manufacturing competence under one roof, we can react flexibly to our customers' individual requirements and offer standard versions as well as customised special products. This allows us to always find the ideal solution for your application - no matter which machining process is involved, from grinding, milling, turning and hard turning to demagnetising.

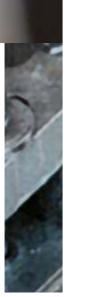
INDUSTRY-WIDE SUCCESS

Thanks to our comprehensive product portfolio and our extensive know-how, SAV solutions are used in a variety of different areas: from machine tables to fully automated production. Whether in automotive, mechanical engineering, medical technology, aerospace, steel construction or in die and mould making - we are in our element in all industries and in all disciplines of workholding. Because we understand exactly which requirements matter in modern manufacturing today.



AUTOMOTIVE

 $S \wedge V$



FULLY FOCUSED ON SOLUTIONS

S/V

Anything but standard: Every idea is unique and requires a special procedure. That is why we at SAV specialise in meeting your ideas and requests with individual product solutions – completely without compromises. This takes more than just theoretical design engineering knowledge: It requires a feeling for different materials and their properties, an understanding of the complexity of processes and creativity for finding the most reliable solution.

Dear customers

11 com

PREFACE BY MARTIN SCHACHERL

We bring together what is required for correct workpiece handling processes: Fast processing and quality. Efficiency and precision. Customisation and automation. Because true challenges are one of our specialities.

Our workholding experts implement a variety of different

requirements with a focus on process optimisation.

We combine all possible workholding and handling disciplines in an intelligent, forward-looking and individually tailored process.

Have a browse of our comprehensive range!

MARTIN SCHACHERL MANAGING DIRECTOR OF SAV GMBH S^{A}

CHAPTER 1 **MAGNET SYSTEMS**

Magnetic workholding solutions are everything but a standard for us. The manufacturing of our high-performance magnets uses our full range of experience in the areas of material properties, design engineering and machine integration.

Our product range in the area of magnet systems comprises permanent, electromagnetic and electro permanent magnetic workholding products, as standard and special solutions.

In addition to the classic magnetic chucks, we also offer sine tables, demagnetisers, pole plates and a variety of different auxiliary magnetic tools.

The development of magnetic chucks for milling revolutionised manufacturing technology:

- Minimal chucking and set-up times
- Active magnetic workpiece positioning
- Machining from 5 sides
- Universal and flexible

Magnet technology:

- Two-dimensional holding force
- High damping
- Pulling down of uneven parts
- High level or operating and process reliability
- Also suitable for larger air gaps
- Modular design
 - For palletising

Wear-free

High efficiency

Extreme holding forces

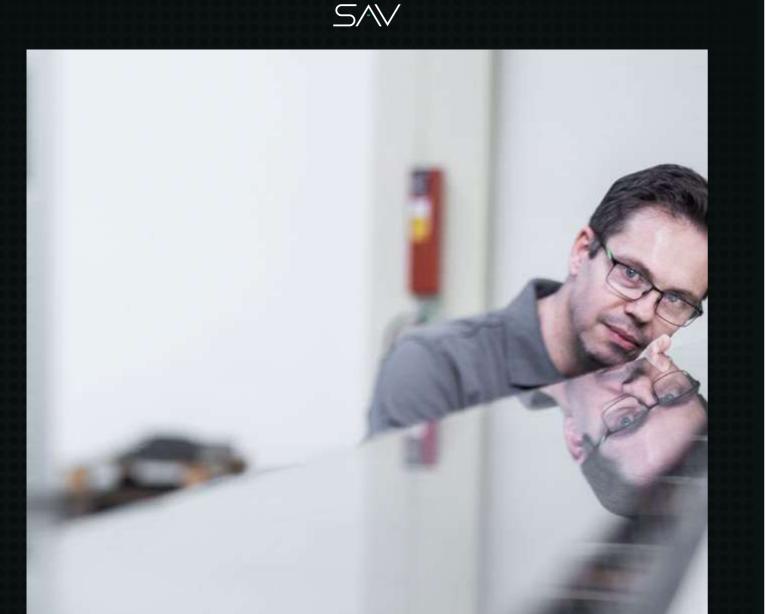
 High level of flexibility at low acquisition costs

For very large parts

Full or partial use of

the machine table

Reliable process and chucking


Optimum workpiece damping

" WE DEVELOP AND MANUFACTURE MAGNET SYSTEMS, ALSO CUSTOMISED TO YOUR WORKPIECES AND MACHINING REQUIREMENTS

JUST CONTACT US

DIETER LEIKAUF **BUSINESS UNIT MANAGER** MAGNET SYSTEMS

CHAPTER SELECTION CRITERIA BY MAGNETIC PRINCIPLES

SAV

1. MAGNET SYSTEMS 1.1 **SELECTION CRITERIA BY MAGNETIC PRINCIPLES**

THE RIGHT PRODUCT FOR ANY APPLICATION

PERMANENT MAGNETIC CHUCKS

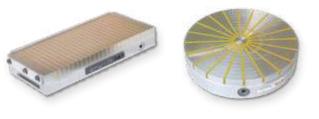
PROPERTIES

- Mechanical, manually operated control
- Very low magnetic field, no adhesion of swarf
- No heat distortion caused by electricity input
- Suitable for palletising
- Size with one circuit up to 600 x 300 mm
- Cost-efficient
- Note information on maximum speed for round magnets
- For technical reasons, the holding force is slightly lower on the area of the activation mechanism

ELECTRO MAGNETIC CHUCKS

PROPERTIES

- Force generated by permanent power supply
- Deep magnetic fields for larger air gaps
- Not suitable for palletising
- Note max. speed for round magnets (chapter 1.4)
- Thermal expansion of a few 0.01 mm depending on duty cycle
- Designed for 100 % duty cycle
- Stable holding forces even for relatively deep machining on thin sheet metal
- Also with water cooling, depending on the design
- Good demagnetising quality and reproducibility of the holding forces
- Holding force and demagnetising can be controlled with a control unit


ELECTRO PERMANENT MAGNETIC CHUCKS

PROPERTIES

- Force generated by a current pulse with a duration of 800 ms
- No continuous energy consumption
- No thermal expansion, highest precision during grinding
- Suitable for palletising with connector
- Also with demagnetising cycle, depending on the design
- Maximum operational reliability
- Extreme holding forces for magnetic chucks for milling
- Designed for shortest cycle duration of 3 min (time from part to part), shorter cycle durations possible on request
- Holding force and demagnetising can be controlled with a control unit
- Note information on maximum speed for round magnets (chapter 1.4)
- On request, power supply also with connector for easy spindle integration
- Spindle flange possible on request

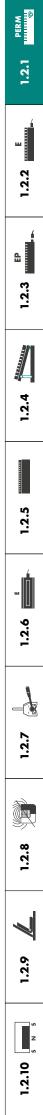
power. people. passion.

1. MAGNET SYSTEMS 1.2 STANDARD MAGNET SYSTEMS

	CHAPTER	TITLE	PAGE
PERM	1.2.1	Permanent magnetic chucks	38
E	1.2.2	Electro magnetic chucks	58
EP	1.2.3	Electro permanent magnetic chucks	78
	1.2.4	Precision sine tables with magnet	128
	1.2.5	Top plates, magnetic clamping blocks and accessories	144
E	1.2.6	Electro holding magnets	156
	1.2.7	Lifting magnets	164
	1.2.8	Demagnetisers and accessoires	170
<u>k</u>	1.2.9	Magnetic welding aids	176
5 N 5	1.2.10	Small magnets	184

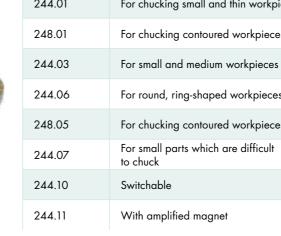
power. people. passion.

CHAPTER


S/W

STANDARD MAGNET SYSTEMS

BRIN

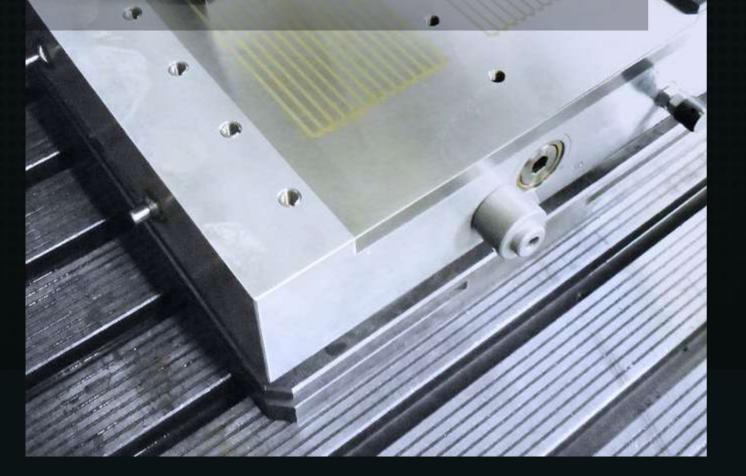


 $S \wedge V$

1.2. STANDARD MAGNET SYSTEMS 1.2.1 **PERMANENT MAGNETIC CHUCKS**

	SAV ART. NO.	COMMENTS	POLE PITCH	MACHINING PROCESS*	PAGE
ERMANENT	MAGNETIC PALLE	ſS			
	220.30	Precision pallet chuck	1.9 mm	및 🚛 🗘	44
	220.31	Precision pallet chuck	6 mm		45
	220.32	Standard pallet chuck	15 mm		45
	HUCK TOWERS AN	ID UPRIGHT MAGNETIC CHUCKS			
100	242.90	Upright magnetic chuck	1.9 mm		46
-	242.91	Magnetic chuck tower	15 mm	<u>o</u> 🖡	46
ANENT	MAGNETIC CHUCI	KS, RECTANGULAR			
	243.01	Standard	1.9 mm		47
	243.07	Flat design	1.9 mm		47
/	243.10	For parts which are difficult to chuck	6 mm		48
	243.11	For milling	15 mm	0 1	49
ND PERA		For milling 5, NEODYMIUM MAGNETIC CIRCULA			
ID PERA					
ND PERA	ANENT MAGNET	5, NEODYMIUM MAGNETIC CIRCULA	AR CHUCKS AND		S
ND PERA	AANENT MAGNET	5, NEODYMIUM MAGNETIC CIRCULA For chucking small and thin workpieces	AR CHUCKS AND 1.9 mm St 3 mm		50
	244.01 248.01	5, NEODYMIUM MAGNETIC CIRCULA For chucking small and thin workpieces For chucking contoured workpieces	AR CHUCKS AND 1.9 mm St 3 mm Ms 1 mm		5 0 50
	244.01 248.01 244.03	5, NEODYMIUM MAGNETIC CIRCULA For chucking small and thin workpieces For chucking contoured workpieces For small and medium workpieces	AR CHUCKS AND 1.9 mm St 3 mm Ms 1 mm 7 mm		50 50 51
	244.01 248.01 244.03 244.06	5, NEODYMIUM MAGNETIC CIRCULA For chucking small and thin workpieces For chucking contoured workpieces For small and medium workpieces For round, ring-shaped workpieces	AR CHUCKS AND 1.9 mm St 3 mm Ms 1 mm 7 mm Radial pole pitch		50 50 51 52
	244.01 248.01 244.03 244.06 248.05	5, NEODYMIUM MAGNETIC CIRCULA For chucking small and thin workpieces For chucking contoured workpieces For small and medium workpieces For round, ring-shaped workpieces For chucking contoured workpieces For small parts which are difficult	AR CHUCKS AND 1.9 mm St 3 mm Ms 1 mm 7 mm Radial pole pitch Radial pole pitch		50 50 51 52 52
	244.01 248.01 244.03 244.06 248.05 244.07	5, NEODYMIUM MAGNETIC CIRCULA For chucking small and thin workpieces For chucking contoured workpieces For small and medium workpieces For round, ring-shaped workpieces For chucking contoured workpieces For small parts which are difficult to chuck	AR CHUCKS AND 1.9 mm St 3 mm Ms 1 mm 7 mm Radial pole pitch Radial pole pitch 6 mm		50 50 51 52 52 53
	244.01 248.01 244.03 244.06 248.05 244.07 244.10	S, NEODYMIUM MAGNETIC CIRCULA For chucking small and thin workpieces For chucking contoured workpieces For small and medium workpieces For round, ring-shaped workpieces For chucking contoured workpieces For small parts which are difficult to chuck Switchable	AR CHUCKS AND 1.9 mm St 3 mm Ms 1 mm 7 mm Radial pole pitch Radial pole pitch 6 mm 13 mm		50 50 51 52 52 53 54
	244.01 248.01 244.03 244.06 248.05 244.07 244.10	S, NEODYMIUM MAGNETIC CIRCULA For chucking small and thin workpieces For chucking contoured workpieces For small and medium workpieces For round, ring-shaped workpieces For chucking contoured workpieces For small parts which are difficult to chuck Switchable	AR CHUCKS AND 1.9 mm St 3 mm Ms 1 mm 7 mm Radial pole pitch Radial pole pitch 6 mm 13 mm		50 50 51 52 52 53 54
	244.01 248.01 244.03 244.06 248.05 244.07 244.10 244.11	 5. NEODYMIUM MAGNETIC CIRCULA For chucking small and thin workpieces For chucking contoured workpieces For round, ring-shaped workpieces For chucking contoured workpieces For small parts which are difficult to chuck Switchable With amplified magnet 	AR CHUCKS AND 1.9 mm St 3 mm Ms 1 mm 7 mm Radial pole pitch Radial pole pitch 6 mm 13 mm 15 mm		50 50 51 52 52 53 54 54
ANGES	244.01 248.01 244.03 244.06 248.05 244.07 244.10 244.11	 5, NEODYMIUM MAGNETIC CIRCULA For chucking small and thin workpieces For chucking contoured workpieces For round, ring-shaped workpieces For chucking contoured workpieces For small parts which are difficult to chuck Switchable With amplified magnet Short tapered flanges, mount with chuck, 	AR CHUCKS AND 1.9 mm St 3 mm Ms 1 mm 7 mm Radial pole pitch Radial pole pitch 6 mm 13 mm 15 mm		50 50 51 52 52 53 54 54 55

242.90 Upright magnetic chuck 1.9 mm Image: I		SAV ART. NO.	COMMENTS	POLE PITCH	MACHINING PROCESS*	PAGE
220.31 Precision pollet chuck 6 mm Image: standard pollet chuck 15 mm Image: standard pollet chuck 15 mm Image: standard pollet chuck 45 CHUCK TOWERS AND UPRIGHT MAGNETIC CHUCKS 242.90 Upright magnetic chuck 1.9 mm Image: standard pollet chuck 46 242.90 Upright magnetic chuck tower 15 mm Image: standard pollet chuck 47 243.01 Standard 1.9 mm Image: standard pollet chuck 47 243.01 Standard 1.9 mm Image: standard pollet chuck 47 243.01 Standard 1.9 mm Image: standard pollet chuck 47 243.01 Standard 1.9 mm Image: standard pollet chuck 47 243.01 For rans which are difficult to chuck 6 mm Image: standard polet	гм	AGNETIC PALLET	S			
220.32 Standard pollet chuck 15 mm Image: Ima		220.30	Precision pallet chuck	1.9 mm	₫ 🛓 🗘	44
242.90 Upright magnetic chuck 1.9 mm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	1	220.31	Precision pallet chuck	6 mm	⊇∎∎♡	45
242.91 Magnetic chuck tower 15 mm Image: Comparison of the second		220.32	Standard pallet chuck	15 mm		45
242.91 Magnetic chuck tower 15 mm Image: Comparison of the second	сни	ICK TOWERS AN	D UPRIGHT MAGNETIC CHUCKS			
243.01 Standard 1.9 mm Image: I		242.90	Upright magnetic chuck	1.9 mm		46
243.01 Standard 1.9 mm Image: I		242.91	Magnetic chuck tower	15 mm	0 🛯	46
243.07 Flat design 1.9 mm Image: Constraint of the set o	гм		(S, RECTANGULAR			
243.10 For parts which are difficult to chuck 6 mm Image: Constraint of the state of		243.01	Standard	1.9 mm		47
243.11 For milling 15 mm Image: Construction of the state ing ing indicating and and indicating and		243.07	Flat design	1.9 mm		47
AMAXENTI MAGNETIS, NEODYMIUM MAGNETIC CIRCULAR CHUCKS AND LAMINATED TOP PLATES 244.01 For chucking small and thin workpieces 1.9 mm 1.0 mm 50 248.01 For chucking contoured workpieces St 3 mm Ms 1 mm 1.0 mm		243.10	For parts which are difficult to chuck	6 mm		48
244.01 For chucking small and thin workpieces 1.9 mm Image: Control of the stress of the stres		243.11	For milling	15 mm	0 1 1	49
248.01 For chucking contoured workpieces Si 3 mm Ms 1 mm Image: Content of the second s	MA	NENT MAGNETS	, NEODYMIUM MAGNETIC CIRCULA	R CHUCKS AND I	AMINATED TOP PLATE	S
248.01 For chucking contoured workpieces Ms 1 mm Image: Control of the second se		244.01	For chucking small and thin workpieces	1.9 mm	₫ 🗘 🗐	50
244.06 For round, ring-shaped workpieces Radial pole pitch Image: Control of the state of the stat		248.01	For chucking contoured workpieces			50
248.05 For chucking contoured workpieces Radial pole pitch Image: Control of the second		244.03	For small and medium workpieces	7 mm		51
244.07 For small parts which are difficult to chuck 6 mm Image: Comparison of the chuck 53 244.10 Switchable 13 mm Image: Comparison of the chuck 54 244.11 With amplified magnet 15 mm Image: Comparison of the chuck 54 248.90 Short tapered flanges, mount with chuck, with stud bolts - Image: Comparison of the chuck 55 248.91 Short tapered flanges, mount with chuck, with cam lock fastening - Image: Comparison of the chuck 56 248.92 Short tapered flanges, mount with chuck, with cam lock fastening - Image: Comparison of the chuck 56		244.06	For round, ring-shaped workpieces	Radial pole pitch		52
244.07 to chuck o min Image: Im		248.05	For chucking contoured workpieces	Radial pole pitch	₫.	52
244.11 With amplified magnet 15 mm Image: Constraint of the second		244.07		6 mm		53
248.90 Short tapered flanges, mount with chuck - Image: Constraint of the second		244.10	Switchable	13 mm	₫. 🛆	54
248.91 Short tapered flanges, mount with chuck, with stud bolts - - - 55 248.92 Short tapered flanges, mount with chuck, with cam lock fastening - - - 56 248.94 Short tapered flanges, mount with chuck - - - 56		244.11	With amplified magnet	15 mm		54
248.91 Short tapered flanges, mount with chuck, with stud bolts - - - 55 248.92 Short tapered flanges, mount with chuck, with cam lock fastening - - - 56 248.94 Short tapered flanges, mount with chuck - - - 56						
248.92 Short tapered flanges, mount with chuck, with cam lock fastening - - - - 56 248.94 Short tapered flanges, mount with chuck - - - - 56		248.90	Short tapered flanges, mount with chuck	-		55
248.92 with cam lock fastening -<	1	248.91	Short tapered flanges, mount with chuck, with stud bolts	_		55
	8	248.92		-		56
		248.94	Short tapered flanges, mount with chuck Morse taper fitting	_		56


* Explanation of the icons on page 4

power. people. passion.

CHAPTER

 $S \wedge V$

PERMANENT MAGNETIC CHUCKS

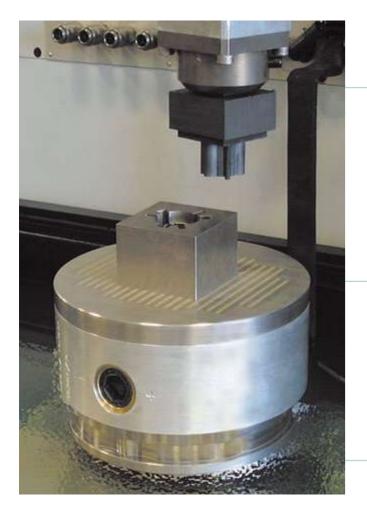
PERM

PAGES 44 - 56

1.2.1 PERM 1.2.2 1.2.3 EP 1.2.4 1.2.5 -1.2.6 -1.2.7 È 1.2.8 Z 1.2.9 1.2.10 **• • •**

SELECTION CRITERIA

					\bigcirc	\bigcirc	<u>,,</u>	
PER <i>N</i>	ANENT MAGNET						للحصا	
				GRINDING	MILLING/DRILLING	HARD MILLING	DIE-SINKING EDM	
SAV 220.30	0	Universal pallet chuck	page 44	~	—	-	~	
SAV 220.31	-	Pallet chuck for small workpieces and workpieces which are difficult to chuck	page 45	~	~	~	~	
SAV 220.32	· · · ·	For chucking medium and large parts, can be adapted to most zero-point work- holding systems	page 45	~	~	-	~	
SAV 242.90		Upright magnetic chuck	page 46	~	_	_	~	
SAV 242.91		Design at customer request	page 46	_	~	~	-	
SAV 243.01		Universal standard grinding magnet, suitable for palletising	page 47	~	_	_	~	
SAV 243.07		Low height, suitable for palletising	page 47	~	_	_	~	
SAV 243.10	2/	For small workpieces which are difficult to chuck	page 48	~	~	~	~	
SAV 243.11		Universal milling magnet, suitable for palletising	page 49	~	~	~	_	


PER	MANENT MAG	NETIC CIRCULAR CHUCKS		NG L	\bigtriangleup	\bigtriangleup	
				CYLINDRICAL GRINDING	TURNING	HARD TURNING	DIE-SINKING EDM
SAV 244.01		Narrow pole pitch, low field, for thin parts	page 50	~	~	_	~
SAV 244.03		Low weight, for thin parts	page 51	~	_	_	_
SAV 244.06		Magnet with high holding force for ring-shaped parts, also for hard turning	page 52	~	~	~	-
SAV 244.07	9	Narrow pole pitch with high holding force, for small parts and parts which are difficult to chuck	page 53	~	~	~	~
SAV 244.10	1	Auxiliary magnet with small diameter, for small workpieces	page 54	~	_	_	-
SAV 244.11		Magnet with high holding force for flat parts	page 54	~	~	~	_

/		
/		

S/V

APPLICATIONS

Die-sinking EDM with neodymium magnetic circular chuck SAV 244.07

grinding parts below 20°.

SAV PALLETISING SYSTEMS

Permanent magnetic chucks with reference system and flushing holes. We supply workholding fixtures for electrical discharge machining (EDM) with any adaptations on request.


Permanent magnetic chucks with reference system for use in the dielectric fluid. The workpieces are loaded outside of the machine and the position is measured.

CUSTOMER BENEFIT

PERMANENT MAGNETIC CHUCKS FOR GRINDING/EDM

- Magnet with high "even" holding force; performance, accuracy
- Large magnetically active area; flexibility
- Low magnetic field; accuracy, safety

2

- Stop bar with groove; accuracy
- Stops integrated into the housing; safety

3

- Low-strength opposite field during switch-off facilitates removal of workpieces; safety, flexibility
- Double neodymium magnet system for very high holding force; performance, safety

4

- Full steel housing; high accuracy, high stability
- Fully leak-tested; safety

 $S^{\}$

- Easy control; safety
- Unique control system, no deformation; accuracy

6

Steel housing can be machined; flexibility

7

- Control from above, ideal for die-sinking EDM; flexibility
- Unique control system, no deformation; accuracy
- Easy control; safety
- Flat design; flexibility

SAV 220.30

PERMANENT MAGNETIC PALLETS

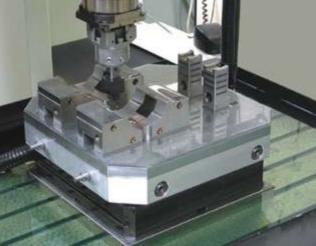
Transverse pole pitch P = 1.9 mm

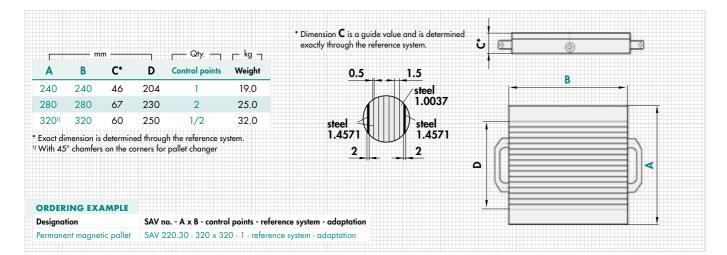
APPLICATION

In conjunction with zero-point workholding systems. Can be adapted to most systems.

MATERIAL

Aluminium main body with steel 1.0037/1.4571 pole plate


TECHNICAL DATA


- Tapped holes for stop bars and stop brackets possible.
- Magnetic field height: 4 mm
- Wear layer of the pole plate: 3 mm
- Rated holding force: 80 N/cm²
- Pole pitch: 1.9 mm

₫ 🗳

SAV 220.31

PERMANENT MAGNETIC PALLETS

True transverse pole pitch P = 6 mm

APPLICATION

In conjunction with zero-point workholding systems. Can be adapted to most systems.

MATERIAL

Aluminium main body with steel 1.0037/1.4571 pole plate

TECHNICAL DATA

- - Wear layer of the pole plate: 2 mm
 - Rated holding force: 120 N/cm²

- brackets possible
- Low magnetic field
- Clamping holes on the top surface on

request

·			- mm			Qty	r kg ⊐
Α	В	C*	D	E	F	Control points	Weight
240	240	60	126.0	-	-	1	18.0
280	280	66	166.0	80.0	80.0	2	21.5
3201)	320	65	206.0	80.0	80.0	1	25.0/36.0
3201)	320	65	234.0	123.0	123.0	2	36.0
				1.1 6			

* Exact dimension is determined through the reference system. ¹⁾ With 45° chamfers on the corners for pallet changer

ORDERING EXAMPLE	
Designation	SAV no A x B - control points - reference system - adaptation
Permanent magnetic pallet	SAV 220.31 - 320 x 320 - 2 - reference system - adaptation

SAV 220.32

PERMANENT MAGNETIC PALLETS

Transverse pole pitch P = 15 mm

APPLICATION

For chucking medium to large parts for grinding, milling and EDM. Can be adapted to most zero-point workholding systems.

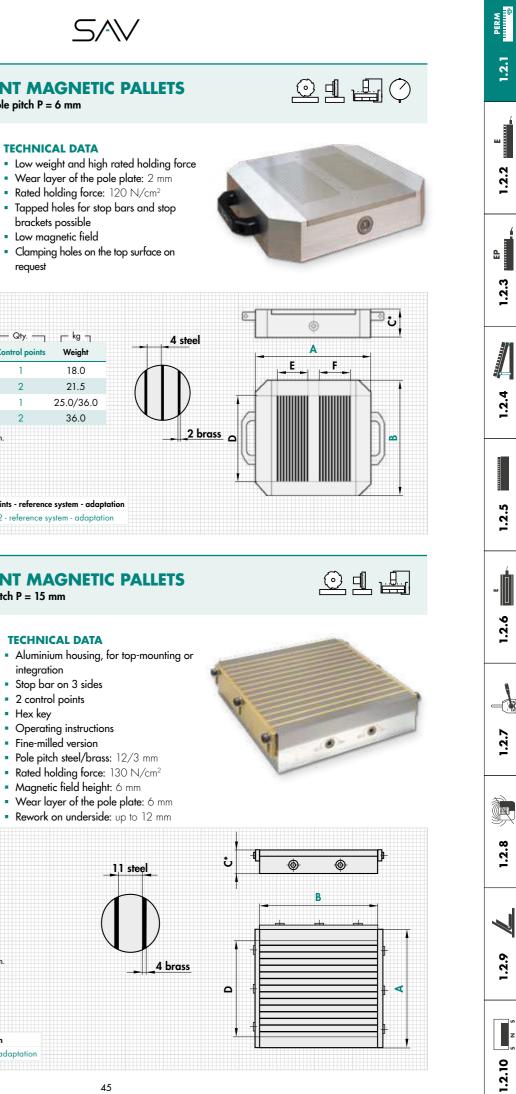
MATERIAL

Aluminium main body with steel 1.0037/1.4571 pole plate

• Pole pitch steel/brass: 12/3 mm

Operating instructions

Fine-milled version


TECHNICAL DATA

integration Stop bar on 3 sides

 2 control points Hex key

- Rated holding force: 130 N/cm²
- Magnetic field height: 6 mm
- Wear layer of the pole plate: 6 mm
- Rework on underside: up to 12 mm

_ <u>_</u>	r	nm ——		r− kg -	
Α	В	C*	D	Weight	
240	240	63.5	198	21.5	(
280	280	63.5	228	29.0	
320 ¹	320	68.5	258	38.0	\sim
				gh the reference system. pallet changer	
With 4	5° chaml		corners for		
With 4	5° chaml	ers on the	corners for		

• Parallelism and angularity: 0.005/100 mm

SAV 242.90

PERMANENT MAGNETIC VERTICAL CHUCKS

With fine transverse pole pitch P = 1.9 mm, for horizontal machining

Rated holding force: 90 N/cm²

• Wear layer of the pole plate: 8 mm

• Magnetic field height: 6 mm

TECHNICAL DATA

SAV 243.01

With fine transverse pole pitch P = 1.9 mm

TECHNICAL DATA

APPLICATION

Suitable for chucking thin, small, medium and large workpieces.

DESIGN

Continuous transverse pole pitch, even holding force over the entire width. Pole divisions made of 0.5 mm brass/1.4 mm steel. Available with adaptation for zero-point workholding system.

- F	n	חות		┌─ kg ─┐		— п	1m		r kg -
Α	В	C +0.5 -2	D	Weight	Α	В	C +0.5 -2	D	Weight
140*	70	49	103	3.7	450	150	51	417	30.0
175	100	49	147	7.0	300	200	51	267	26.2
200	100	49	177	8.1	400	200	51	373	35.0
255	130	49	223	14.5	500	200	51	466	43.7
150	150	51	118	9.8	600	200	51	566	52.4
250	150	51	223	16.4	500	250	56	464	58.5
300	150	51	267	19.7	500	300	56	462	70.2
350	150	51	316	23.0	600	300	56	557	84.2
					* Contro	ol on fa	ce side w	ith pull l	bar
ORDE	RING	EXAM	PLE						
Design	ation			SAV no A	хВ				

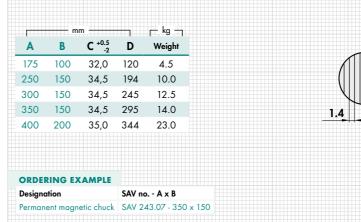
Permanent magnetic chuck SAV 243.01 - 500 x 200

SAV 243.07

PERMANENT MAGNETIC CHUCKS

With fine transverse pole pitch P = 1.9 mm, low version

APPLICATION

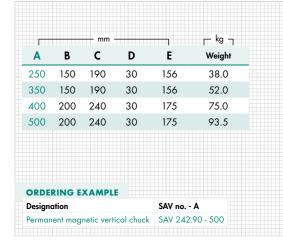

Primarily for EDM and grinding. Suitable for thin parts.

TECHNICAL DATA

- - Magnetic field height: 6 mm

DESIGN

Extremely low height and weight-optimised. ON/OFF control from above. Standard version without flushing hole. Pole divisions made of 0.5 mm brass/1.4 mm steel. Available with flushing hole(s) (surcharge applies). Available with adaptation for zero-point workholding system. Crosswise and lengthwise stop bar. Attached with clamps.



APPLICATION

Primarily for horizontal machining of workpieces.

DESIGN

Upright chuck made of St 52-3. Supplied with permanent magnetic chuck SAV 243.01. Pole divisions made of 0.5 mm brass/1.4 mm steel. The upright chuck can also be manufactured with other controllable permanent magnetic, electromagnet or electro permanent magnetic chucks. Clamping grooves (N).

SAV 242.91

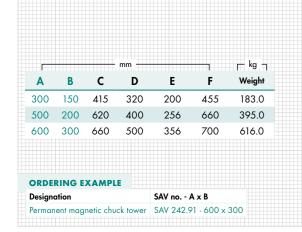
PERMANENT MAGNETIC CHUCK TOWERS Chuck towers, precision-milled

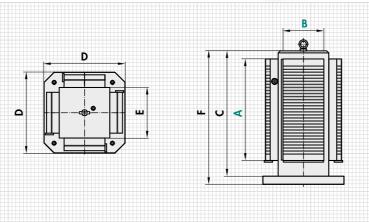
APPLICATION

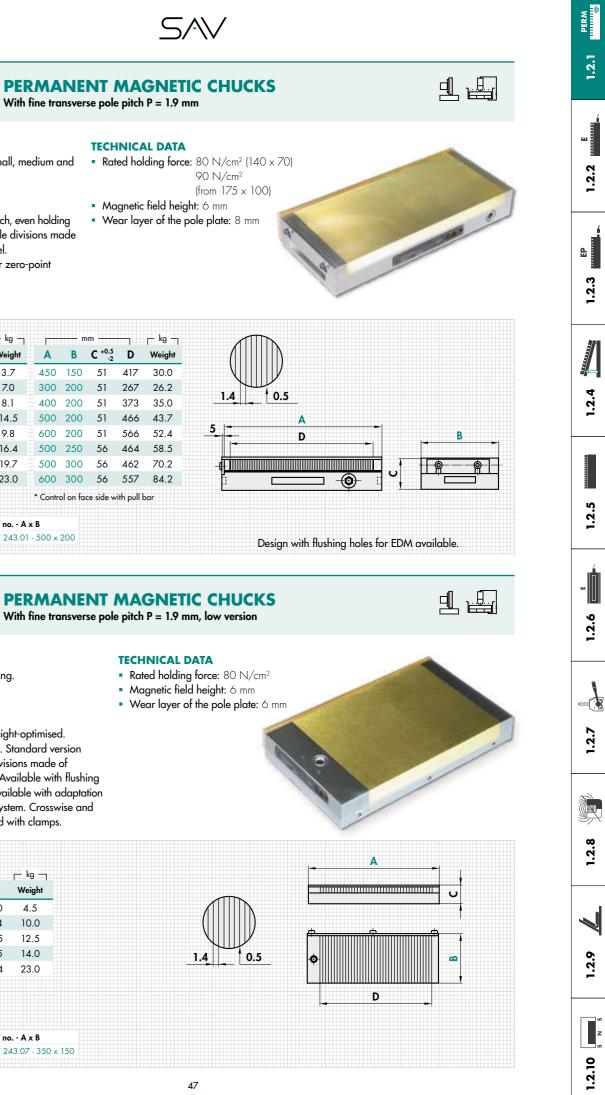
For horizontal milling and drilling processes.

DESIGN

Chuck tower made of St 52-3, precision-milled. With 4 permanent magnetic chucks SAV 243.11, amplified high-energy system, 15 mm pole pitch, fastening holes as required.


TECHNICAL DATA


- Perpendicularity: 0.03/1000 mm
- Parallelism: 0.04/1000 mm
- Rated holding force: 150 N/cm²
- Magnetic field height: 12 mm
- Wear layer of the pole plate: 5 mm



Δ

Е 9

TECHNICAL DATA

• Rated holding force: 120 N/cm²

(on inducible steel surface: 180 N/cm²)

• Magnetic field height: approx. 4 mm

• Wear layer of the pole plate: 3 mm

SAV 243.10

APPLICATION

magnets in the pole gap.

DESIGN

NEODYMIUM MAGNETIC CHUCK

With P = 6 mm transverse pole pitch, neodymium iron boron magnet, extremely high holding force

For workpieces which are difficult to chuck, e.g. Ferro-Tic, tungsten carbide

with cobalt content, very small workpieces. For grinding workpieces which

Extremely high holding force using a specially developed process. Sturdy

solid steel body. Separate ON/OFF control possible on the 2 face sides.

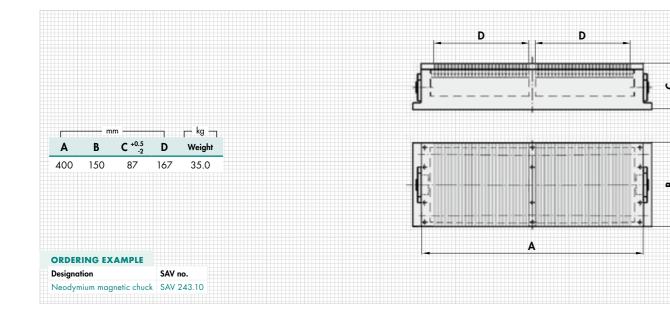
Pole divisions made of 4 mm steel and 2 mm epoxy resin with NdFeB

are difficult to chuck magnetically, and for hard turning.

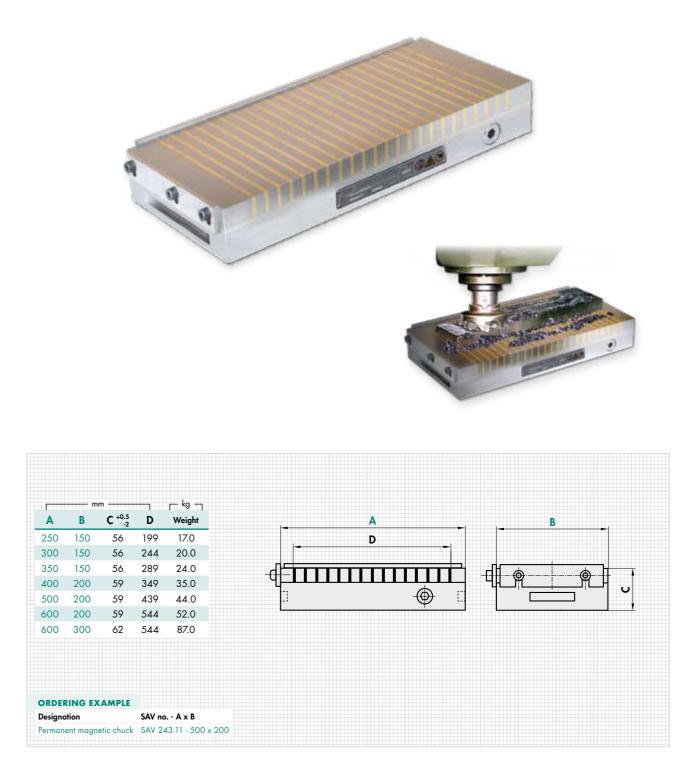
PERMANENT MAGNETIC CHUCKS

With continuous transverse pole pitch P = 15 mm, with neodymium magnets, amplified system

APPLICATION


TECHNICAL DATA

Suitable for heavy and rough machining. The dense magnetic field with maximum concentration opens up areas of application for small, medium and large workpieces, even with rough or uneven surfaces.


DESIGN

Neodymium magnet system with high holding force. ON/OFF control using a manual lever. In the OFF position, a low-strength opposite field facilitates removing of the workpieces. The magnets are equipped with lengthwise and crosswise stops.

48

• Rated holding force: 150 N/cm² • Magnetic field height: approx. 12 mm • Wear layer of the pole plate: 5 mm

SAV 244.01

PERMANENT MAGNETIC CIRCULAR CHUCKS With very fine parallel pole pitch P = 1.9 mm

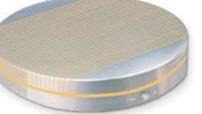
SAV 244.03

PERMANENT MAGNETIC CIRCULAR CHUCKS

With parallel pole pitch P = 7 mm

APPLICATION

For chucking small and thin to medium workpieces.


DESIGN

Powerful magnet system with neodymium magnets and low magnetic field height. Magnetic force continuously adjustable. Available with flange on request (see SAV 248.90 to 248.94).

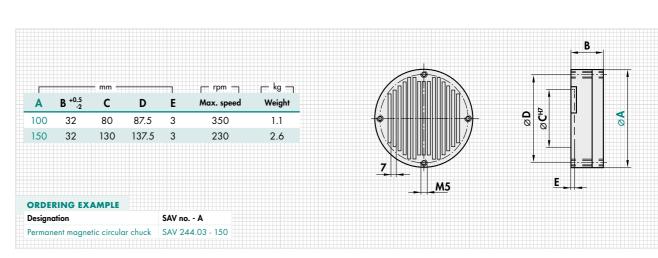
Size J (diameter and depth) machining is possible at the centre of the pole plate. For the other sizes, a 5 mm wearing thickness applies across the entire surface. Concentric lines facilitate visual alignment of the workpieces.

TECHNICAL DATA

- Rated holding force: up to ø 160: 60 N/cm² from ø 200: 90 N/cm²
- Magnetic field height: 8 mm
- Wear thickness of the top surface: 5 mm
- Geometrically balanced: Quality G 6.3

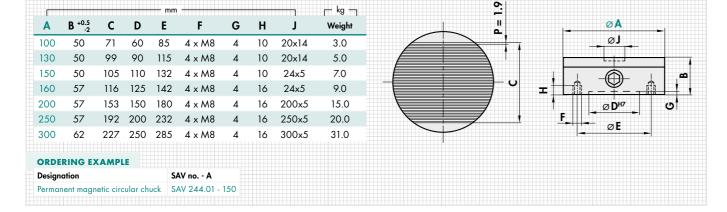
For small and medium workpieces.

• Rated holding force: 100 N/cm² • Magnetic field height: 6 mm


 $S \wedge V$

• Wear layer of the pole plate: 3 mm

TECHNICAL DATA


DESIGN

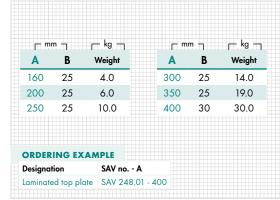
The special magnet system allows chucking of parts as thin as 1 mm with maximum holding force. ON/OFF control with removable key (radial adjustment). The machine spindle should be lockable for ON/OFF. Available with flange on request (see SAV 248.90 to 248.94).

CYLINDRICAL GRINDING ON PERMANENT MAGNETIC CIRCULAR CHUCK

Application example for SAV 244.06 with customised pole shoes for up to 300 different workpieces.

SAV 248.01

LAMINATED TOP PLATES

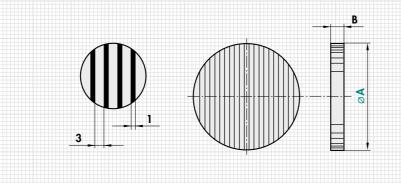

For placing on circular magnets with parallel pole pitch

APPLICATION

For chucking profiled workpieces on magnets with parallel pole pitch. Suitable for round magnets SAV 244.01 and SAV 244.11.

DESIGN

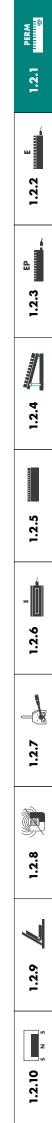
Any type and form of profiles can be machined into the chuck blocks (can also be provided by us). The max. integration depth must be noted. Attaching to a magnet upon agreement. The pole division must run parallel to the base magnet.



TECHNICAL DATA

- Pole pitch: 3 mm steel, 1 mm brass
- Maximum integration depth: 8 mm

The machining process can cause discolourations. However, these do not constitute a technical defect.



┫

SAV 244.06

PERMANENT MAGNETIC CIRCULAR CHUCKS With radial pole pitch

APPLICATION

For round and ring-shaped workpieces.

DESIGN

High magnetic force. Concentric rings allow easy alignment of workpieces. Magnetic field continuously adjustable up to ø 300 mm. Through hole possible up to max. diameter **D**. Standard version without through hole at the centre. Diameter C is magnetically not active. Available with flange on request (see SAV 248.90 to 248.95).

Larger diameters with T-grooves on request. Pole gap with brass pigment.

TECHNICAL DATA

- Rated holding force: 80 to 150 N/cm²
- Wear thickness of the top surface: 5 mm (for A = 100 to 300 mm) 10 mm (for A = 350 to 400 mm)
- Geometrically balanced: G 6.3

ØA

øC

⊕

øD

Ø EH7 øG ØΗ

4 fastening holes per pitch circle

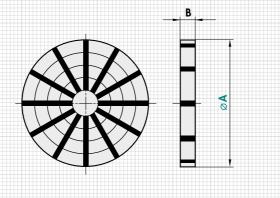
-				— mm						– Qty. –	r kg -	⊢ N/cm² ⊣
Α	B +0.5 -2	С	D.2	Е	F	G	н	I	J	Poles	Weight	Nom. hold.f
100	48	14	-	51	6	76	-	M6	8	6	2.6	80
130	57	16	20	50	5	100	-	M6	10	10	5.7	90
150	57	20	24	50	5	80	120	M6	8	10	6.5	90
200	57	28	30	60	5	110	180	M6	8	12	13.0	115
250	70	30	50	80	5	140	220	M6	8	16	20.0	135
300	73	40	58	150	6	180	260	M8	10	16	30.0	150
350	73	40	58	170	6	220	300	M8	12	20	49.0	150
400	75	40	58	200	8	260	340	M8	12	20	75.0	150
500	92	60	58	200	8	360	440	M8	12	26	144.0	150
ORDE	RING EX		E									
Design	ation			S	AV no	b A						
Permar	nent magn	etic circ	ular ch	uck S	AV 2	44.06 -	400					

SAV 248.05

LAMINATED TOP PLATES

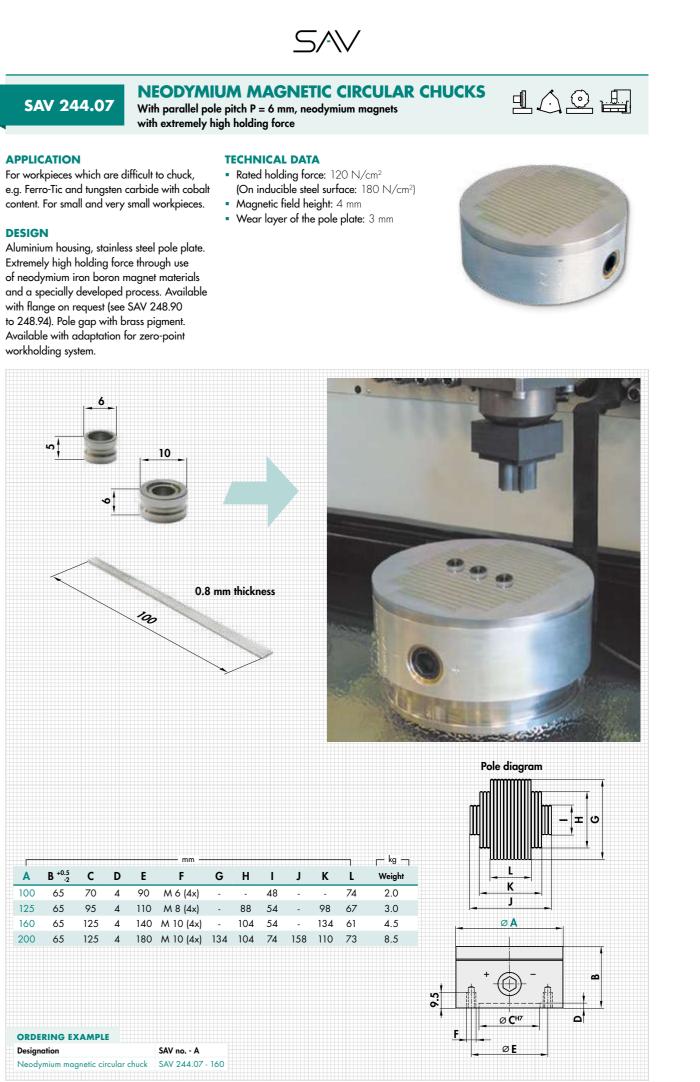
For placing on circular magnet SAV 244.06 with radial pole pitch

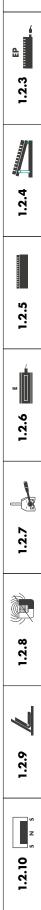
DESIGN


For chucking profiled workpieces on permanent magnetic circular chuck SAV 244.06. Attaching to a magnet upon agreement.

TECHNICAL DATA

• Permitted profile depth: Max. 8 mm


mn	n —	Qty	ן ד ^{- k} g ר	
Α	В	Poles	Weight	
150	20	10	3.0	
200	20	12	5.0	
250	20	16	8.0	
300	25	16	14.0	
350	25	20	19.0	
400	25	20	24.5	
ORDER	ING EX/			
Designat			/ no A	
-			/ 248.05 - 150	0



APPLICATION

e.g. Ferro-Tic and tungsten carbide with cobalt content. For small and very small workpieces.

Extremely high holding force through use of neodymium iron boron magnet materials and a specially developed process. Available with flange on request (see SAV 248.90 to 248.94). Pole gap with brass pigment. Available with adaptation for zero-point workholding system.

PERM

1.2.1

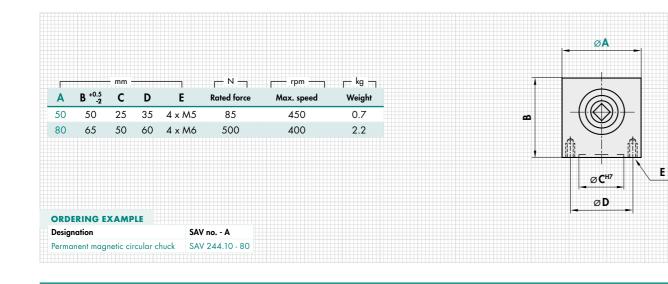
-

SAV 244.10

PERMANENT MAGNETIC CIRCULAR CHUCKS Controllable

SHORT TAPERED FLANGES

For adapting to machine and workholding fixture


APPLICATION

DESIGN

For manual collet chucks as an auxiliary magnet for chucking small, delicate workpieces. Also suitable for fixtures and as a holding magnet.

Controllable permanent magnet, chucking areas at the top.

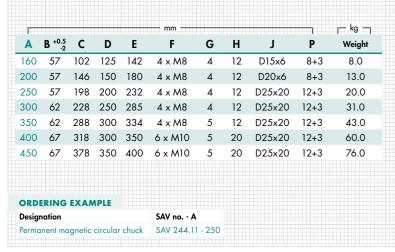
SAV 244.11

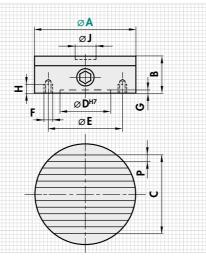
PERMANENT MAGNETIC CIRCULAR CHUCKS With parallel pole pitch, reinforced magnet system

APPLICATION

For chucking small to large workpieces for grinding workpieces. Pole gap with solid brass. and turning.

DESIGN


Powerful magnet system with neodymium magnets and low magnetic field height. All sizes with 1 control point. Magnetic force continuously adjustable. Option for integrating a central hole "H". Available with flange on request (see SAV 248.90 to 248.94).


Concentric rings facilitate visual alignment of the

TECHNICAL DATA

- Rated holding force:
- Diameter A = 160 and 200 mm: 100 N/cm² Diameter A = 250 to 500 mm: 150 N/cm^2
- Magnetic field height: 10 mm
- Wear layer of the pole plate: 6 mm
- Geometrically balanced: G 6.3

SAV 248.90

APPLICATION

For flanging on round magnets or other workholding fixtures. For spindle heads as per DIN 55026 (55021) shape A and B, ISO 702/I A1 and A2, ASA B5.9 A1 and A2.

DESIGN Soft steel flanges as per DIN, ISO and ASA standards. Machined on the spindle side. The magnet-side/chuck-side adaptation is carried out as required (please state diameter and hole pattern when ordering). On customer request, we supply our round magnets already fully flanged.

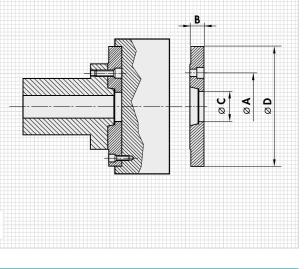
Spindle head size	Α				
		Dimensions B , C and D as well as the			
4*	82.6	fastening hole circle as per requirements			
4**	85.0	or your specifications.			
5	104.8				
6	133.4				
8	171.4				
11	235.0				
15	330.0	 For spindle head size DIN 55026 For spindle head size DIN 55021 			
ORDERING EXAM	DIE				

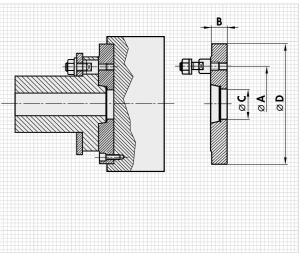
SAV 248.91

SHORT TAPERED FLANGES

With stud bolts and bayonet disc

APPLICATION


For flanging on round magnets or other workholding fixtures. For spindle heads as per DIN 55027 and ISO 702/III.


DESIGN

Soft steel flanges as per DIN and ISO standards. Machined on the spindle side. With stud bolts and collar nuts. The magnet-side/chuckside adaptation is carried out as required (please state diameter and hole pattern when ordering). On customer request, we supply our round magnets already fully flanged.

D as well as the fasten ing hole circle as per requirements or your specifications.	3 4 4 4	104.8	4 5
requirements or your	4		Ŭ
	-	133.4	
specifications.	4		6
		171.4	8
	6	235.0	11
	6	330.2	15
		PLE	
- spindle head siz	SAV no st	PLE	ORDERING EXAM Designation

SAV 248.92

SHORT TAPERED FLANGES With cam lock fastening

APPLICATIONS

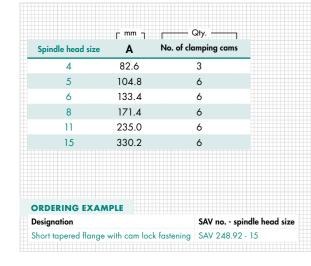
SAV PALLETISING

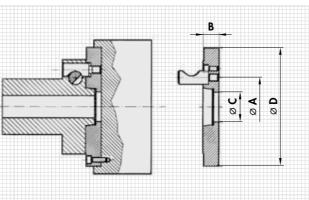
We palletise all our magnets on zero-point workholding systems,

We can send you the corresponding

as available on the market.

information as required.


SYSTEMS


APPLICATION

For flanging on round magnets or other workholding fixtures. For spindle heads as per DIN 55029, ISO 702/II, ASA b 5.9 D1.

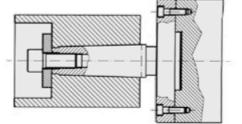
DESIGN

Soft steel flanges as per DIN, ISO and ASA standards. Machined on the spindle side. The magnet-side/chuck-side adaptation is carried out as required (please state diameter and hole pattern when ordering). On customer request, we supply our round magnets already fully flanged.

Dimensions **B**, **C** and **D** as well as the fastening hole circle as per requirements or your specifications.

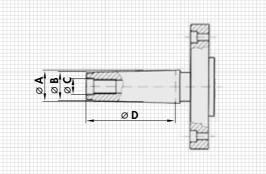
SAV 248.94

MORSE TAPER FITTINGS


For adapting to machine and workholding fixture

APPLICATION

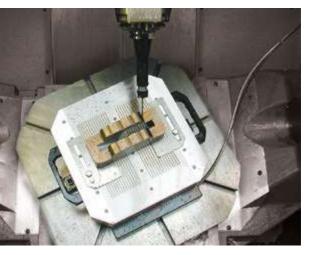
For flanging on round magnets or other workholding fixtures. For fittings as per DIN 228.


DESIGN

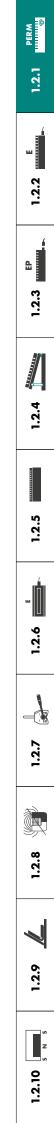
Soft steel flanges as per DIN. Machined on the spindle side. The magnet-side/chuck-side adaptation is carried out as required (please state diameter and hole pattern when ordering). On customer request, we supply our round magnets already fully flanged. Hardened, polished version made of casehardened steel available on request.

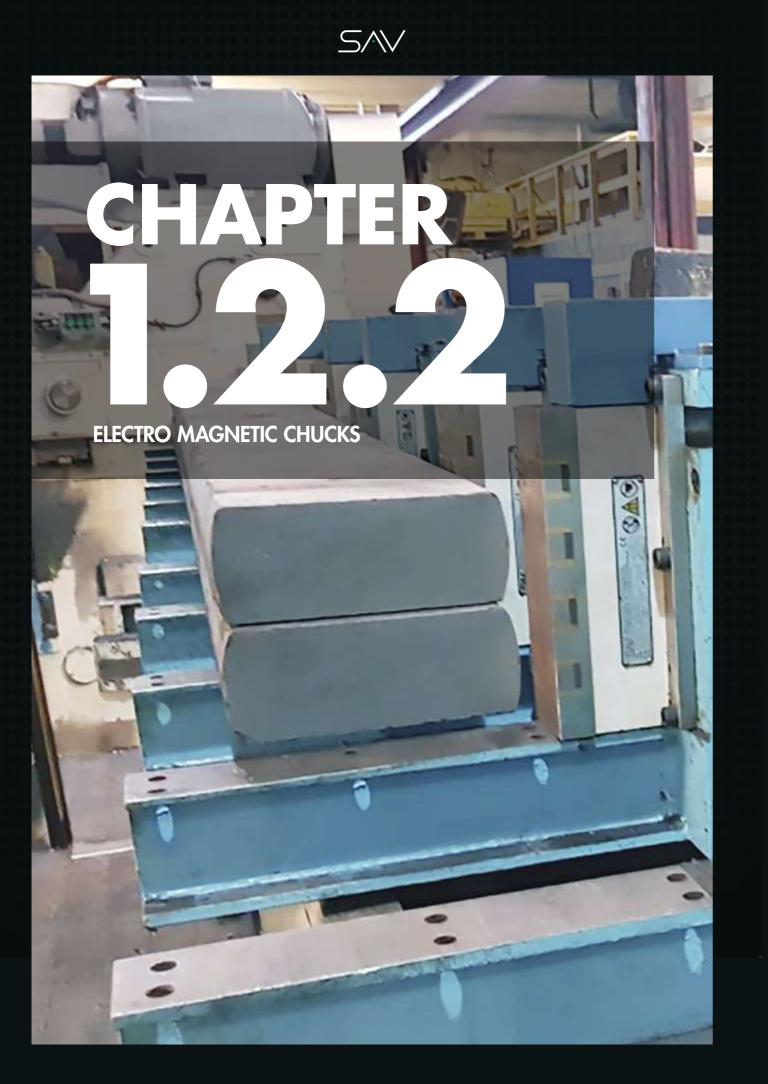
Morse taper size	A	B	т С	D
MK 0	9.045	6.4	_	50.0
MK 1	12.065	9.4	M 6	53.5
MK 2	17.78	14.6	M 10	64.0
MK 3	23.825	19.8	M 12	81.0
MK 4	31.267	25.9	M 16	102.5
MK 5	44.399	37.6	M 20	129.5
MK 6	63.348	53.9	M 24	182.0
ORDERING EXAM	PLE			

SAV no. - Morse taper size Designation Morse taper fitting SAV 248.94 - MK 6 and dimensions



Dimensions as per requirements or your specifications.


 $S^{\}$

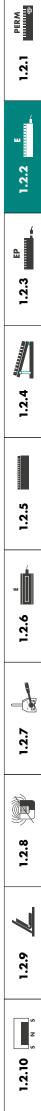

permanent magnetic vertical chuck in special execution for milling and drilling

HSC machining with SAV 220.31 pallet

1.2. STANDARD MAGNET SYSTEMS 1.2.2 ELECTRO MAGNETIC CHUCKS

	SAV ART. NO.	COMMENTS	POLE PITCH	MACHINING PROCESS*	PAGE
ELECTRO MAG	SNETIC CHUCK	5			
	243.40	For thin parts, place lengthwise	4 mm	₫	62
	243.41	For thin parts, place crosswise	4 mm	₽.	64
	243.42	Universal model	13/18/25 mm	9	66
ELECTRO MAG	GNETIC CIRCUL	AR CHUCKS			
	244.40	For ring-shaped parts	Radial pole pitch		68
	244.41	For thin parts, for multiple parts	Circular pole pitch		70
	244.43	For thin parts, magnetically active centre	Parallel pole pitch	1	72
ELECTRO MAG	GNETIC CIRCUL	AR CHUCKS FOR CENTELESS SH	OE GRINDING		
\odot	244.45	For slide shoe grinding of small, thin rings	Circular pole pitch		73
ELECTRONIC	POLARITY REVE	RSAL DEVICE, HAND REMOTE U		FIERS	
	876.10	For electronic control	-	-	74
	876.02	For manual operation	-	-	76
SEPARATE SL	P RING ASSEM	BLIES AND CARBON BRUSH HC	DLDERS		
	248.81	Slip ring assembly	-	-	77
THE	248.83	Carbon brush holder	_	-	77

 $S \approx$



* Explanation of the icons on page 4

59

E
PAGES 62 - 77

SELECTION CRITERIA

ELECTRO MAGNETIC CHUCKS AND CIRCULAR CHUCKS

 Force Dee Not Note There 		air gaps			⊙] ∞]	⊙ 		\bigtriangleup
StateAlsoGood	with water cooling, dependent of demagnetising quality ar	elatively deep machining on thin sheet metal ding on the design nd reproducibility of the holding forces ng can be controlled with a control unit		GRINDING	MILLING/ DRILLING	HARD MILLING	CYLINDRICAL GRINDING	TURNING
SAV 243.40		Transverse fine pole pitch for thin workpieces 40 x 40 mm, lengthwise workpiece orientation	page 62	~	_	_	_	_
SAV 243.41	~	Longitudinal fine pole pitch for thin workpieces 40 x 40 mm, crosswise workpiece orientation	page 64	~	_	_	_	-
SAV 243.42		Low magnetic field with narrow, real pole pitch	page 66	~	_	_	_	_
SAV 244.40		For ring-shaped workpieces, use of pole shoes possible to create free space for tools	page 68	_	_	_	~	~
SAV 244.41		For multiple workpieces on dividing circle and thin plates, centre is not magnetic	page 70	_	-	_	~	~
SAV 244.43		For thin plates, centre is magnetic	page 72	_	-	_	~	_
SAV 244.45	0	For slide shoe grinding of thin rings (rolling bearing rings)	page 73	_	_	_	~	_

APPLICATIONS

ELECTRO MAGNETIC CIRCULAR CHUCK

For automated grinding of ferritic cores

61

 $S \wedge V$

ELECTRO MAGNETIC CIRCULAR CHUCK

For slide shoe grinding of rolling bearing rings > 400 mm

SAV 243.40

ELECTRO MAGNETIC CHUCKS With continuous fine transverse pole pitch P = 4 mm

Electromagnet systems with very narrow pole pitch. Especially suitable for thin parts. Main workpiece axis parallel to the magnet length.

DESIGN

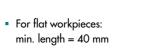
- Pole plate with particularly narrow, continuous transverse pole pitch, 3 mm steel and 1 mm brass.
- Pole divisions bonded and additionally bolted together solidly with tie rods lengthwise
- Pole plates bolted in a narrow grid
- 8 mm wear layer on the pole plate
- Low magnetic field height of 4 mm
- Chucking slots on both face sides
- Length over 1000 mm with through holes for fastening upon agreement
- Robust and water-tight
- Protection rating IP 65
- 100 % duty cycle
- Suitable for connecting to the SAV 876.10 control unit

RATED HOLDING FORCE

100 N/cm², controllable with control unit using holding force coding switch

RATED VOLTAGE, RECOMMENDED

24 V DC up to and including 118 W 110 V DC for all other sizes

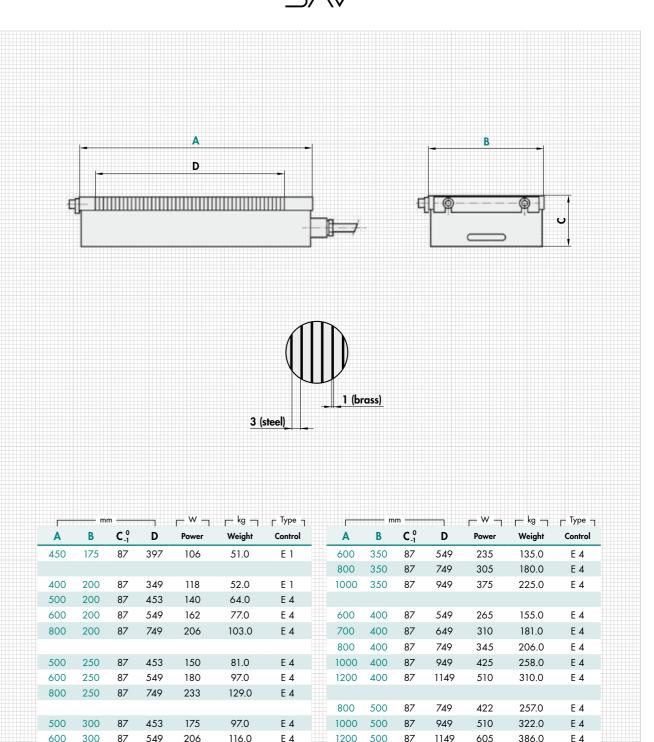

APPLICATION

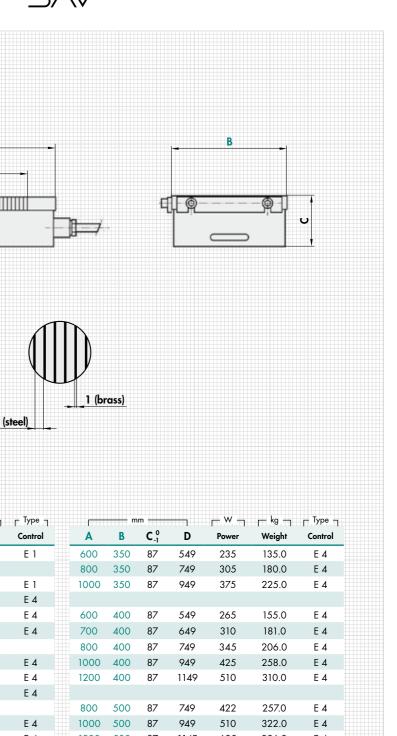
For chucking thin, plate-shape workpieces with shape and position tolerances of 0.01 to 0.02 mm.

╝

 For main workpiece axis perpendicular to the pole pitch

 For thin workpieces up to: min. thickness = 2 mm





- Stop bar on one short and one long side
- 3 m connecting cable on right short side, rear
- Larger magnetic chucks are provided with lifting lugs for transport

40

- Control and hand remote unit not in the scope of delivery
- Clamps

[m	m		F W J	kg	г Туре -	
Α	В	C .1	D	Power	Weight	Control	4
450	175	87	397	106	51.0	E 1	60
							80
400	200	87	349	118	52.0	E 1	10
500	200	87	453	140	64.0	E 4	
600	200	87	549	162	77.0	E 4	60
800	200	87	749	206	103.0	E 4	70
							80
500	250	87	453	150	81.0	E 4	10
600	250	87	549	180	97.0	E 4	12
800	250	87	749	233	129.0	E 4	
							80
500	300	87	453	175	97.0	E 4	10
600	300	87	549	206	116.0	E 4	12
800	300	87	749	268	155.0	E 4	
1000	300	87	949	330	193.0	E 4	

Other sizes and rated voltages on request. Larger chucking areas can be implemented by joining several blocks without gaps.

ORDERING EXAMPLE SAV no. - A x B - rated voltage Designation Electro magnetic chuck SAV 243.40 - 1200 x 500 - 110 V

RECOMMENDED CONTROL AND CONTROL UNIT

уре	Control	Hand remote unit	
E 1	SAV 876.10-S-T-24/7/230	SAV 876.02-SE3	
E 4	SAV 876.10-S-O-110/6/230	SAV 876.02-SE3	

Installation control units or for combinations as per page 74.

Ð 1.2.3 1.2.4 1.2.5 -1.2.6

PER.M

1.2.1

w

1.2.2

Ì 1.2.8

1.2.7

1.2.9

1.2.10

J

SAV 243.41

ELECTRO MAGNETIC CHUCKS With continuous fine longitudinal pole pitch P = 4 mm

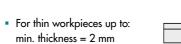
Electromagnet systems with very narrow pole pitch. Especially suitable for thin parts. Main workpiece axis at right angle to the magnet length.

DESIGN

- Pole plate with particularly narrow, continuous longitudinal pole pitch, 3 mm steel and 1 mm brass
- Pole divisions bonded and additionally bolted together solidly with tie rods
- Pole plates bolted in a narrow grid
- 8 mm wear layer on the pole plate
- Low magnetic field height of 4 mm
- Chucking slots on both face sides
- Length over 1000 mm with through holes for fastening upon agreement
- Robust and water-tight
- Protection rating IP 65
- 100 % duty cycle
- Suitable for connecting to the SAV 876.10 control unit

RATED HOLDING FORCE

100 N/cm², controllable with control unit using holding force coding switch

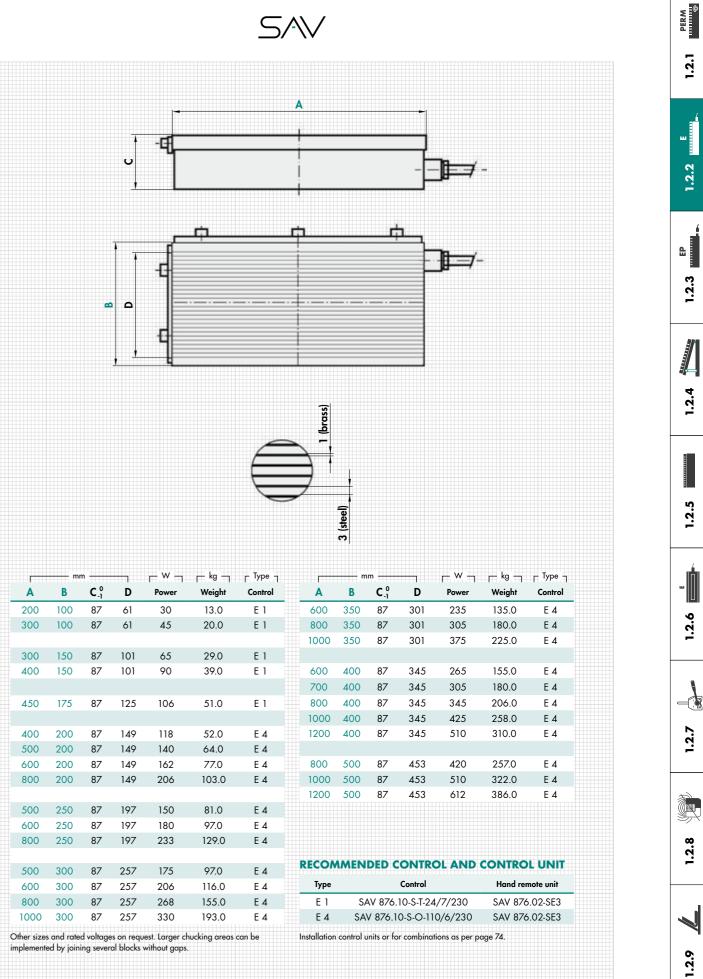

RATED VOLTAGE, RECOMMENDED

24 V DC up to and including 106 W 110 V DC for all other sizes

APPLICATION

For chucking thin, plate-shape workpieces with shape and position tolerances of 0.01 to 0.02 mm.

 For main workpiece axis perpendicular to the pole pitch



SCOPE OF DELIVERY

For flat workpieces:

min. width = 40 mm

- Stop bar on one short and one long side
- 3 m connecting cable on right short side, rear
- Larger magnetic chucks are provided with lifting lugs for transport
- Control and hand remote unit not in the scope of delivery
- Clamps

	\frown	
E	$ \frown $	١
F		7
7	\supset	

Г	г Туре -	_— kg —	<u>г</u> w –		n ——	mi	· · · · ·
A	Control	Weight	Power	D	C _1	В	Α
60	E 1	13.0	30	61	87	100	200
80	E 1	20.0	45	61	87	100	300
100							
	E 1	29.0	65	101	87	150	300
60	E 1	39.0	90	101	87	150	400
70							
80	E 1	51.0	106	125	87	175	450
100							
120	E 4	52.0	118	149	87	200	400
	E 4	64.0	140	149	87	200	500
80	E 4	77.0	162	149	87	200	600
100	E 4	103.0	206	149	87	200	800
120							
	E 4	81.0	150	197	87	250	500
	E 4	97.0	180	197	87	250	600
	E 4	129.0	233	197	87	250	800
REC							
REC	E 4	97.0	175	257	87	300	500
Ту	E 4	116.0	206	257	87	300	600
E	E 4	155.0	268	257	87	300	800
E	E 4	193.0	330	257	87	300	1000
Installe	can be	nucking areas a	est. Larger ch	s on requ	d voltage	and rate) ther sizes
				111 1		11	

ORDERING EXAMPLE

SAV no. - A x B - rated voltage Designation Electro magnetic chuck SAV 243.41 - 1200 x 500 - 110 V

ELECTRO MAGNETIC CHUCKS With continuous transverse pole pitch P = 13 mm, 18 mm and 25 mm The magnetic chuck features a high magnetic power, sturdy design and a long service life. The pole pitch forms "true" N and S poles.

DESIGN

- Solid pole plate with 13 mm, 18 mm or 25 mm transverse pole pitch "True" N/S pole spacing
- With water cooling for increased accuracy on request With compressed air holes for easier removal of large
- parts (adhesion) for P = 18 mm or 25 mm on request
- Pole plates bolted in a narrow grid
- 8 mm wear layer on the pole plate
- Chucking slots on both face sides
- Length over 1000 mm with through holes for fastening upon agreement
- Robust and water-tight
- Protection rating IP 65
- 100 % duty cycle
- Suitable for connecting to the SAV 876.10 control unit

RATED HOLDING FORCE

90 N/cm², with P = 13 mm pole pitch 110 N/cm², with P = 18 mm pole pitch 115 N/cm², with P = 25 mm pole control unit using holding force coding switch

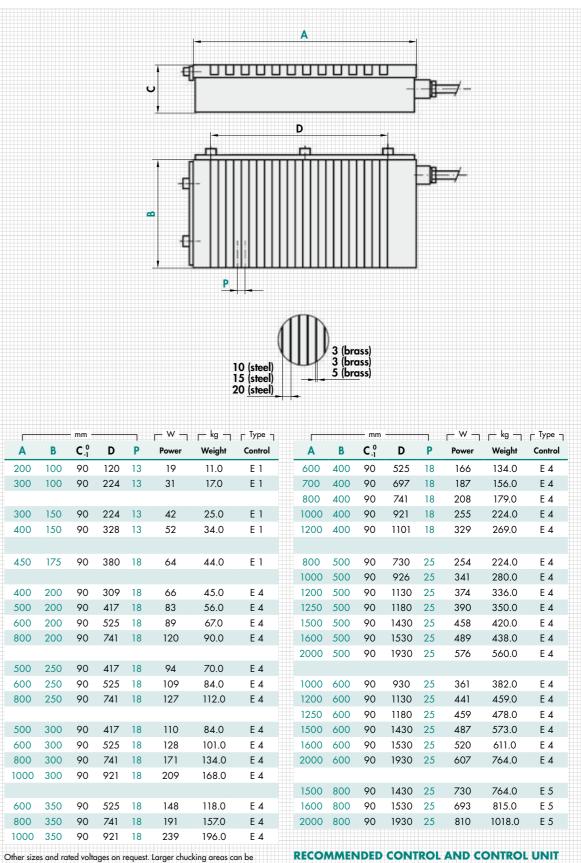
RATED VOLTAGE, RECOMMENDED

24 V DC up to and including 64 W 110 V DC for all other sizes

APPLICATION

For universal chucking of workpieces with shape and position tolerances of 0.01 to 0.02 mm.

 For main workpiece axis perpendicular to the pole pitch



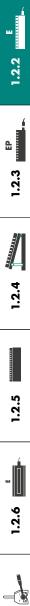
- For workpieces up to min. thickness x: 4.5 mm with P = 13 mm 6.0 mm with P = 18 mm 8.5 mm with P = 25 mm
- For flat workpieces min. a: $25 \text{ mm} \times 25 \text{ mm}$ with P = 13 mm $32 \text{ mm} \times 32 \text{ mm}$ with P = 18 mm $45 \text{ mm} \times 45 \text{ mm}$ with P = 25 mm

SCOPE OF DELIVERY

- Stop bar on one short and one long side
- 3 m connecting cable on right short side, rear
- Larger magnetic chucks are provided with lifting lugs for transport
- Control and hand remote unit not in the scope of delivery
- Clamps

implemented by joining several blocks without gaps.

ORDERING EXAMPLE


SAV no. - A x B x P - rated voltage Designation Electro magnetic chuck SAV 243.42 - 2000 x 800 - 25 - 110 V

_		— mm			_ w _	r kg -	г Туре -
4	В	C .1	D	Р	Power	Weight	Control
00	400	90	525	18	166	134.0	E 4
00	400	90	697	18	187	156.0	E 4
00	400	90	741	18	208	179.0	E 4
00	400	90	921	18	255	224.0	E 4
00	400	90	1101	18	329	269.0	E 4
00	500	90	730	25	254	224.0	E 4
00	500	90	926	25	341	280.0	E 4
00	500	90	1130	25	374	336.0	E 4
50	500	90	1180	25	390	350.0	E 4
00	500	90	1430	25	458	420.0	E 4
00	500	90	1530	25	489	438.0	E 4
00	500	90	1930	25	576	560.0	E 4
00	600	90	930	25	361	382.0	E 4
00	600	90	1130	25	441	459.0	E 4
50	600	90	1180	25	459	478.0	E 4
00	600	90	1430	25	487	573.0	E 4
00	600	90	1530	25	520	611.0	E 4
00	600	90	1930	25	607	764.0	E 4
00	800	90	1430	25	730	764.0	E 5
00	800	90	1530	25	693	815.0	E 5
00	800	90	1930	25	810	1018.0	E 5

RECOMMENDED CONTROL AND CONTROL UNIT

/pe	Control	Hand remote unit
1	SAV 876.10-S-T-24/7/230	SAV 876.02-SE3
4	SAV 876.10-S-O-110/6/230	SAV 876.02-SE3
5	SAV 876.10-S-O-110/16/230	SAV 876.02-SE3

Installation control units or for combinations as per page 74.

PERM

1.2.1

1.2.10

1.2.9

1.2.7

Ì

ELECTRO MAGNETIC CIRCULAR CHUCKS SAV 244.40 With radial pole pitch

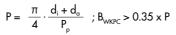
The electro magnetic circular chucks feature high holding forces. Radial T-slots can be machined into the pole plate for universal use or for use of pole shoes.

DESIGN

- Solid pole plate
- The radial pole positioning is particularly suitable for using pole shoes. This prerequisite is absolutely required for the runout of the tool or the grinding wheel in case of 3-sides machining. Version with T-slot (T) as per DIN 650-10^{H10} are available for this.
- 8 mm wear layer on the pole plate
- Protection rating IP 65
- 100 % duty cycle
- Suitable for connecting to the SAV 876.10 control unit
- Available with flange on request (see SAV 248.90 to 248.94).

RATED HOLDING FORCE

120 N/cm², controllable with control unit using holding force coding switch

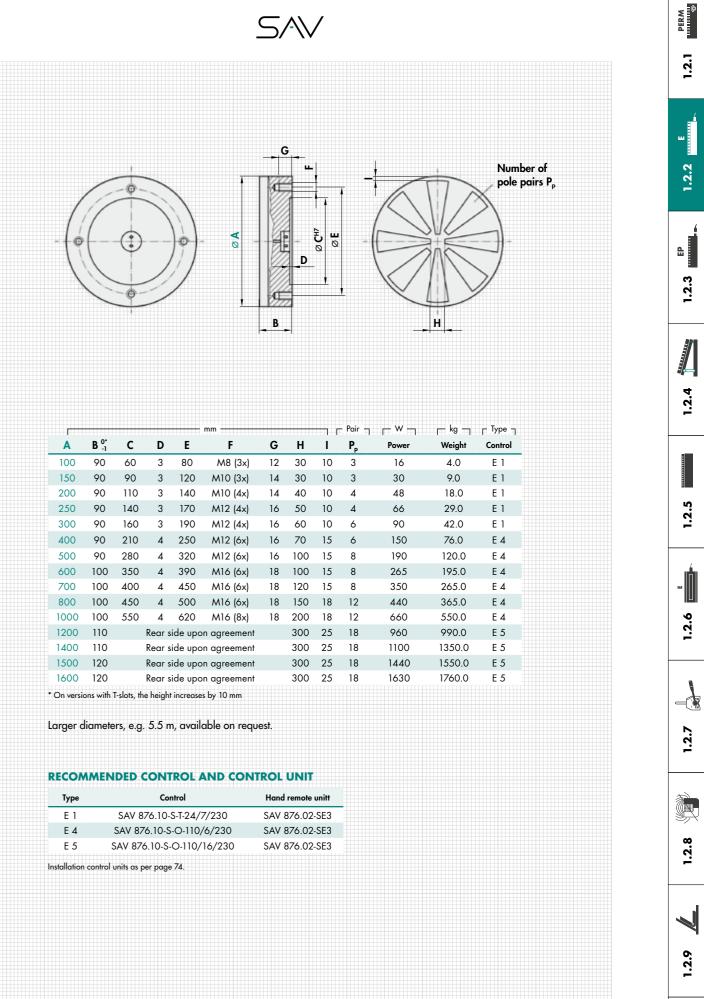

RATED VOLTAGE, RECOMMENDED

24 V DC up to and including 90 W power 110 V DC for all other sizes

APPLICATION

For grinding of cylindrical and ring-shaped workpieces on carousel-type internal and external grinding machines. Also suitable for turning with shape and position tolerances of 0.01 to 0.02 mm.

- Same pole pitch on the circumference, therefore suitable for ring-shaped workpieces
- For workpieces up to min. width equivalent to 35 % pole pitch on the pitch circle diameter



Also for thin rings

SCOPE OF DELIVERY

- Larger round magnets are provided with threads for transport
- Standard version without T-slots and pole shoes
- Standard electrical connection centrally on the rear side using terminals
- Optionally available with integrated flat slip ring
- assembly for diameters from 1000 mm
- Control and hand remote unit not in the scope of delivery

					mm					
Α	B ^{0*} ₋₁	с	D	E	F	G	н			
100	90	60	3	80	M8 (3x)	12	30			
150	90	90	3	120	M10 (3x)	14	30			
200	90	110	3	140	M10 (4x)	14	40			
250	90	140	3	170	M12 (4x)	16	50			
300	90	160	3	190	M12 (4x)	16	60			
400	90	210	4	250	M12 (6x)	16	70			
500	90	280	4	320	M12 (6x)	16	100			
600	100	350	4	390	M16 (6x)	18	100			
700	100	400	4	450	M16 (6x)	18	120			
800	100	450	4	500	M16 (6x)	18	150			
1000	100	550	4	620	M16 (8x)	18	200			
1200	110		Rear s	ide upo	n agreement		300			
1400	110		Rear s	ide upo	n agreement		300			
1500	120	120 Rear side upon agreement 300								
1600	120		Rear s	ide upo	n agreement		300			
* On version	ons with 1	ſ-slots, th	e height	increases	s by 10 mm					

	Туре	Control	Hand remote
ľ	E 1	SAV 876.10-S-T-24/7/230	SAV 876.02
	E 4	SAV 876.10-S-O-110/6/230	SAV 876.02
	E 5	SAV 876.10-S-O-110/16/230	SAV 876.02

ORDERING EXAMPLE Designation SAV no. - A - version - rated voltage Electro magnetic circular chuck SAV 244.40 - 800 - T - 110 V

68

ELECTRO MAGNETIC CIRCULAR CHUCKS SAV 244.41 With circular pole pitch

Thanks to the circular pole pitch, the electro magnetic circular chuck has a strong, low magnetic field for thin plates.

DESIGN

- Pole pitch manufactured "gap-free"
- Pole plates bolted in a narrow grid
- 8 mm wear layer on the pole plate
- Protection rating IP 65
- 100 % duty cycle
- Suitable for connecting to the SAV 876.10 control unit
- Available with flange on request (see SAV 248.90 to 248.94).

RATED HOLDING FORCE

80 N/cm², controllable with control unit using holding force coding switch

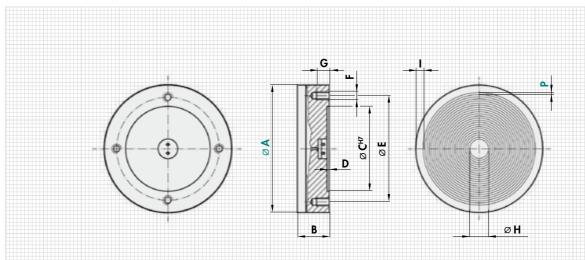
RATED VOLTAGE, RECOMMENDED

24 V DC up to and including 90 W 110 V DC for all sizes

APPLICATION

Primarily for grinding of disc-shaped workpieces on internal and external grinding machines with rotary table. Not for thin rings. The circular pole pitch also allows machining of multiple parts which are not placed centrally. Also suitable for turning with shape and position tolerances of 0.01 to 0.02 mm.

 Circular pole pitch ensures even distribution of holding force on the circumference. This makes it suitable for thin, flat parts (e.g. saw blades).



□45

- Placement of multiple parts on pitch circle diameter possible
- For workpieces up to min. thickness: 2 mm with P = 5.5 mm4 mm with P = 9 mm8 mm with P = 18 mm
- For flat workpieces: Min. size = $45 \text{ mm} \times 45 \text{ mm}$
- Not suitable for thin rings

SCOPE OF DELIVERY

- Larger round magnets are provided with threads for transport
- Standard electrical connection centrally on the rear side using terminals
- Optionally available with integrated flat slip ring
- assembly for diameters from 1000 mm
- Control and hand remote unit not in the scope of delivery

 $S^{\}$

A	B . ⁰	с	D	Е	F	G	н	Т	Р	Power	Weight	Control
100	100	60	3	80	- M8 (3x)	12	22	9	5,5	16	4.0	E 1
150	100	90	3	120	M10 (3x)	14	30	13,5	5,5	30	9.0	El
200	100	110	3	140	M10 (3x) M10 (4x)	14	40	16	5,5	48	18.0	El
250	100	140	3	170	M10 (4x) M12 (4x)	14	40	16	5,5	66	29.0	E 1
300	100	140	3	120	M12 (4x) M12 (4x)	16	4J 55	16	5,5	90	42.0	El
500	100	100	5	170	1V(12 (4X)	10	55	10	5,5	70	42.0	
400	100	210	4	250	M12 (6v)	16	46	21	9	150	92.0	E 4
400 500	100	210 280	4	250 320	M12 (6x)		40 74	21	9	190	144.0	E 4
500					M12 (6x)	16	74 66					E 4
700	100 100	350 400	4	390 450	M12 (6x)	18 18	00 76	21 21	9 9	264 350	208.0	E 4
					M12 (6x)						283.0	
300	100	450	4	500	M16 (6x)	18	129	26	9	440	369.0	E 4
000	100	550	4	620	M16 (8x)	18	131	22	9	660	577.0	E 4
100	100	210	4	250	M12 (6x)	16	46	21	18	150	92.0	E 4
+00 500	100	280	4	320	M12 (0x) M12 (6x)	16	40 74	21	18	190	144.0	E 4
500	100	350	4	320	M12 (6x) M12 (6x)	18	66	21	18	264	208.0	E 4
700	100	400	4	450	M12 (0x) M12 (6x)	18	76	21	18	350	208.0	E 4
800	100	400	4	430 500	M12 (0x) M16 (6x)	18	138	26	18	440	369.0	E 4
000	100	430 550	4	620	M16 (8x)	18	140	20	18	660	577.0	E 4
000	100	550	4	020	10(10 (0X)	10	140	22	10	000	577.0	L 4
200	110	Poo	r cida		greement	22	131	23	9	960	989.0	E 5
400	110				•	22	136	26	9	1100	1346.0	E 5
400 500	120	Rear side upon agreement Rear side upon agreement				22	101	26	9	1440	1545.0	E 5
600	120				greement	22	129	26	9	1630	1760.0	E 5
000	120	Rec	1 3146	opon a	greemen	LL	127	20		1000	1700.0	
200	110	Reg	ır side		greement	22	140	23	18	960	989.0	E 5
400	110			•	greement	22	136	26	18	1100	1346.0	E 5
500	120				greement	22	128	26	18	1440	1545.0	E 5
600	120				greement	22	138	26	18	1630	1760.0	E 5
					9							
CON		DED C	ONI			TROL	UNIT					
Туре				ntrol			remote					
E 1 SAV 876.10-S-T-24/7/230							876.02					
E 4		SAV 876					876.02					
E 5		SAV 876	.10-S-	0-110/	16/230	SAV 8	876.02	-SE3				
allation	control	units as pe	er page	e 74.								

Α	B .1	С	D	E	F	G	Н	I	Ρ	Power	Weight	Control
00	100	60	3	80	M8 (3x)	12	22	9	5,5	16	4.0	E 1
50	100	90	3	120	M10 (3x)	14	30	13,5	5,5	30	9.0	E 1
200	100	110	3	140	M10 (4x)	14	40	16	5,5	48	18.0	E 1
250	100	140	3	170	M12 (4x)	16	45	16	5,5	66	29.0	E 1
300	100	160	3	190	M12 (4x)	16	55	16	5,5	90	42.0	E 1
400	100	210	4	250	M12 (6x)	16	46	21	9	150	92.0	E 4
500	100	280	4	320	M12 (6x)	16	74	21	9	190	144.0	E 4
600	100	350	4	390	M12 (6x)	18	66	21	9	264	208.0	E 4
700	100	400	4	450	M12 (6x)	18	76	21	9	350	283.0	E 4
800	100	450	4	500	M16 (6x)	18	129	26	9	440	369.0	E 4
000	100	550	4	620	M16 (8x)	18	131	22	9	660	577.0	E 4
400	100	210	4	250	M12 (6x)	16	46	21	18	150	92.0	E 4
500	100	280	4	320	M12 (6x)	16	74	21	18	190	144.0	E 4
600	100	350	4	390	M12 (6x)	18	66	21	18	264	208.0	E 4
700	100	400	4	450	M12 (6x)	18	76	21	18	350	283.0	E 4
800	100	450	4	500	M16 (6x)	18	138	26	18	440	369.0	E 4
000	100	550	4	620	M16 (8x)	18	140	22	18	660	577.0	E 4
200	110	Rea	ır side	upon a	greement	22	131	23	9	960	989.0	E 5
400	110	Rea	ır side	upon a	greement	22	136	26	9	1100	1346.0	E 5
500	120	Rea	ır side	upon a	greement	22	101	26	9	1440	1545.0	E 5
600	120	Rea	ır side	upon a	greement	22	129	26	9	1630	1760.0	E 5
200	110	Rea	ır side	upon a	greement	22	140	23	18	960	989.0	E 5
400	110	Rea	ır side	upon a	greement	22	136	26	18	1100	1346.0	E 5
500	120	Rea	ır side	upon a	greement	22	128	26	18	1440	1545.0	E 5
600	120	Rea	ır side	upon a	greement	22	138	26	18	1630	1760.0	E 5
CON	MEN	DED C	ONT	ROL /	AND CON	TROL	UNIT					
Туре			Cor	ntrol		Hand	l remote	unit				
E 1		SAV 87		S-T-24/7	7/230		876.02					
E 4							876.02 876.02					
E 5							876.02 876.02					
							57 0.0Z					
allation	control	units as pe	er page	. 74.								

ORDERING EXAMPLE SAV no. - A - P - rated voltage Designation

Electro magnetic circular chuck SAV 244.41 - 800 - 18 - 110 V

1.2.1 PERM
1.2.2 ^E
1.2.3 EP
1.2.4
1.2.5
1.2.6
1.2.7
1.2.8
1.2.9 🔏
z s

ELECTRO MAGNETIC CIRCULAR CHUCKS SAV 244.43

With parallel pole pitch P = 4 mm

Round magnet with fine pole pitch for thin workpieces. Centre magnetically active.

DESIGN

- Pole plate with particularly narrow, continuous pole pitch, 3 mm steel and 1 mm brass
- Low height
- Pole divisions bonded and reinforced with tie rods
- High accuracy thanks to pole plates bolted in a narrow grid
- Low field height of 4 mm
- Switch-off using demagnetising cycle
- Fastening hole pattern with threads at the rear
- or through holes upon agreement
- 8 mm wear layer on the pole plate
- Robust and water-tight
- Protection rating IP 65
- Suitable for connecting to the SAV 876.10 control unit

APPLICATION

For grinding thin, flat workpieces.

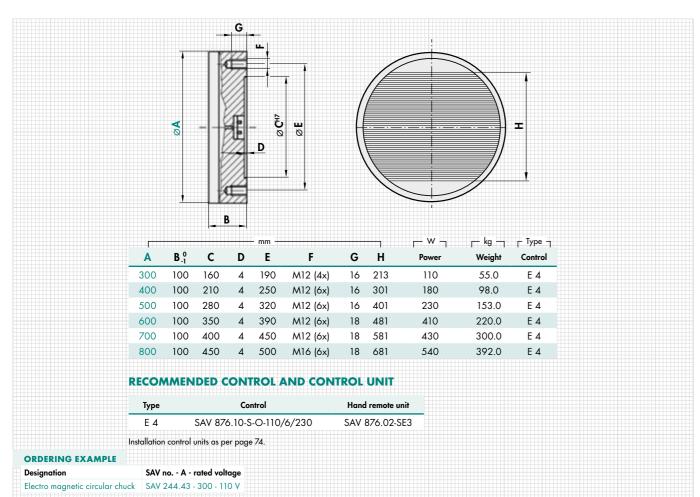
- Grinding thin plates, wide rings with low height and min. contact widths of 40 mm
- For workpieces up to: min. thickness = 2 mm

For flat workpieces:

min. length = 40 mm

CAD -

RATED HOLDING FORCE


100 N/cm², controllable with control unit using holding force coding switch

RATED VOLTAGE, RECOMMENDED

110 V DC

SCOPE OF DELIVERY

- Larger round magnets are provided with threads for transport
- Standard electrical connection centrally on the rear side using terminals Control and manual operation not in the scope of delivery

ELECTRO MAGNETIC CIRCULAR CHUCKS FOR SAV 244.45 **CENTELESS SHOE GRINDING** With pot magnet system for large range of workpieces

Special round magnet for thin rings (rolling bearings).

DESIGN

- Extreme magnetic field for grinding a large range of workpieces
- Delivery with drivers upon agreement or adapted to existing drivers
- Spindle adaptation upon agreement
- On request with exchangeable pole plates for large chucking area
- For easy workpiece handling, easy to automate
- Internal cooling water feed possible
- Control and hand remote unit not in the scope of delivery

APPLICATION

- · For grinding small rings with small workpiece contact area
- Eccentric workpiece chucking and positioning using stationary slide shoes for extremely low wall thickness fluctuation
- Easy changeover with universal workpiece drivers
- Universally suitable for large range of diameters
- For chucking workpieces up to 500 mm diameter
- Workpiece eccentric to the spindle
- Magnet for rotation, slide shoes (provided by customer) for precision

RATED VOLTAGE, RECOMMENDED

24 V DC up to 250 mm diameter	• La
110 V DC over 250 mm diameter	 Ste

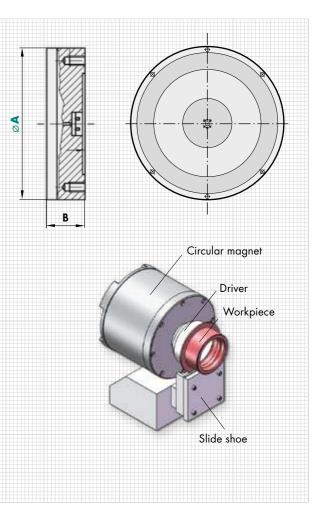
	c

 S^{A}

<u>г</u> п	nm —	r kg -	r w ¬	г Туре - Т
Α	B ₋₁ ⁰	Weight	Power	Control
150	130	23.0	25	E 1
200	130	40.0	40	E 1
250	160	80.0	62	E 1
300	160	113.0	90	E 4
400	180	225.0	140	E 4
450	180	285.0	180	E 4
500	200	390.0	250	E 4

RECOMMENDED CONTROL AND CONTROL UNIT

Туре	Control	Hand remote unit
E 1	SAV 876.10-S-T-24/7/230	SAV 876.02-SE3
E 4	SAV 876.10-S-O-110/6/230	SAV 876.02-SE3
Installation cor	ıtrol units as per page 74.	
ORDERING Designation	EXAMPLE	SAV no A - rated voltag
•	netic circular chuck for centeless shoe grinding	SAV 244.45 - 500 - 110



SCOPE OF DELIVERY

arger round magnets are provided with threads for transport Standard electrical connection centrally on the rear side using terminals

Control and hand remote unit not in the scope of delivery

PERM 1.2.1 -1.2.2 EP 1.2.3 1.2.4 1.2.5 1.2.6 1.2.7 Ì 1.2.8 1.2.9 1.2.10

SAV 876.10

ELECTRONIC POLARITY-REVERSING CONTROL UNITS

With integrated microcontroller and holding force control

DESIGN

The device complies with the standards:

- 2014/35/EU Low Voltage Directive
- 2014/30/EU Electromagnetic Compatibility Directive
- 2011/65/EU RoHS

A safety contact in the control unit can be used to prevent machining of the workpiece if the voltage unit is not switched on.

Manually actuated with illuminated push-buttons. The optional connection to a CNC control uses a 24 V signal voltage.

A stepped holding force control is integrated as a standard. It can be controlled with a coding switch.

When using the lower levels of the holding force control, it must be noted that safety as per the accident prevention regulations is no longer ensured. The enabling level can be adjusted, however, and must be adapted to the workpiece.

Ambient temperature max.: 45 °C Power supply: 230/400 V DC Frequency: 50/60 Hz Duty cycle for electromagnets: 100 %

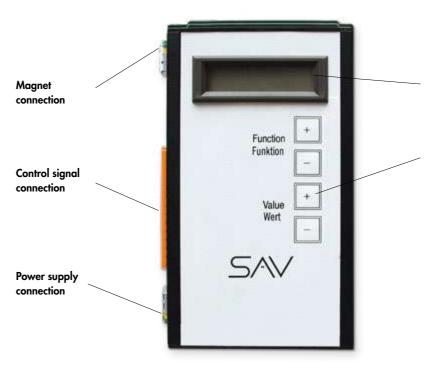
APPLICATION

For electromagnetic workholding devices. Also suitable for retrofitting.

FUNCTION

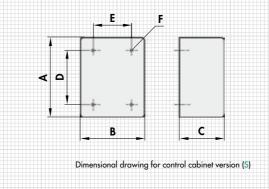
Electronic polarity reversal control units supply electromagnetic workholding devices with direct current. In addition, the integrated polarity reversal device and microcontroller reduce the residual holding force between the magnetically held workpieces and the workholding device caused by remanence. This makes it easier to remove the workpieces from the magnetic chuck and to remove any swarf generated. At the same time, the residual field strength in the workpiece is dissipated almost completely.

For parts which are particularly difficult to magnetise, the controller offers a number of advanced polarity reversal programs. When ordering a magnetic chuck and polarity reversal control unit together, you will of course receive optimised settings for time and magnetic action. For your safety, the device permanently monitors the power source, its own power components and all connecting cables including the magnetic coil. An LCD display acts as a signal generator.



PERFORMANCE CHARACTERISTICS

- Small and compact
- Can be integrated into any machine control cabinet
- User-friendly with LCD plain text display and film keypad
- Universal for all magnet types and voltages
- Reliable and safe operation



	г Туре -	DC in V	ך max. in A ך	F AC in V	C in kW	<u>г</u> А – ј	
Order number	Control	Magnet voltage	Magnet current	Power supply	max. magnetic power	Fuse	Mains transformer required
876.10 T-24 / 7 / 230	E 1	24	7	230	168	4	yes (T)
876.10 T-24 / 15 / 230	E 2	24	15	230	360	6.3	yes (T)
876.10 T-24 / 25 / 230	E 3	24	25	230	600	6.3	yes (T)
876.10 O-110 / 6 / 230	E 4	110	6	230	660	4	no (O)
376.10 O-110 / 16 / 230	E 5	110	16	230	1760	16	no (O)
876.10 O-110 / 30 / 230	Ε6	110	30	230	3300	25	no (O)
876.10 T-110 / 6 / 400	Ε7	110	6	400	660	4	yes (T)
876.10 T-110 / 16 / 400	E 8	110	16	400	1760	16	yes (T)
876.10 T-110 / 30 / 400	E 9	110	30	400	3300	25	yes (T)

GEOMETRIC DATA

Control cabinet	versi	on (S) pro	tectio	on rat	ing II	P 54		Installation ve	ersion	(E) pr	otecti	ion r	ating	IP OC)	
								ړ kg		г Туре	1 -					-1	ן _F kg
Order number	Contr.	Α	В	С	D	E	F	Weight	Order number	Contr.	Α	В	С	D	E	F	Weight
876.10-S-T-24/7/230	E 1	250	400	150	205	355	ø10	14.0	876.10-E-T-24/7/230	E 10	220	120	95	210	85	ø5	2.0
876.10-S-T-24/15/230	E 2	250	500	150	205	455	ø10	20.0	876.10-E-T-24/15/230	E 11	260	120	95	250	85	ø5	3.0
876.10-S-T-24/25/230	E 3	500	400	250	455	355	ø10	32.0	876.10-E-T-24/25/230	E 12	320	120	95	310	85	ø5	6.0
876.10-S-O-110/6/230	E 4	300	250	155	260	210	ø8	10.0	876.10-E-O-110/6/230	E 13	220	160	95	210	85	ø5	2.0
76.10-S-O-110/16/230	E 5	250	400	150	205	355	ø10	14.0	876.10-E-O-110/16/230	E 14	260	160	95	250	85	ø5	3.0
76.10-S-O-110/30/230	Ε6	250	400	150	205	355	ø10	16.0	876.10-E-O-110/30/230	E 15	350	160	100	325	225	ø8	8.0
876.10-S-T-110/6/400	Ε7	500	400	250	455	355	ø10	28.0	876.10-E-T-110/6/400	E 16	220	160	95	210	85	ø5	2.0
376.10-S-T-110/16/400	E 8	500	400	250	455	355	ø10	38.0	876.10-E-T-110/16/400	E 17	260	160	95	250	85	ø5	3.0
376.10-S-T-110/30/400	Ε9	600	400	250	555	355	ø10	54.0	876.10-E-T-110/30/400	E 18	350	160	100	325	225	ø8	6.0
	B	-+-	F		C	et vers	ion (S		ļ	- -							
RDERING EXAMPLE										Dimensi	onal ar	awing	for ins	rallafioi	n versk	on (⊑)	

LCD display:

For displaying operating states and error messages in plain text.

Film keypad:

For easy adjustment of operating parameters:

- Magnet voltage
- Demagnetising program, rough
- Demagnetising program, fine Characteristics of the holding force curve (levels 1 – 16)
- Number of clamping impulses
- Clamping impulse period
- Holding force level for machine enable

PER.M

1.2.1

•

1.2.2

Ð

1.2.3

1.2.4

1.2.9

1.2.10

HAND REMOTE UNITS

For actuating polarity reversal control units SAV 876.10

SAV 876.02 - SE3

DESIGN

To comply with accident prevention regulations on machine tools, it must be ensured that the machine feed is only enabled when the chucking magnet is activated (using auxiliary contacts) and that the activation is monitored with an indicator light. The control units comply with these regulations.

The indicator light is integrated into the keys of the control unit. The auxiliary contacts for the machine feed are located in the polarity reversal control unit.

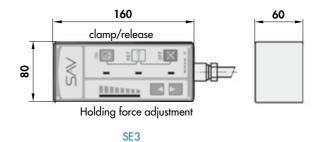
APPLICATION

For switching DC magnets in conjunction with the electronic polarity reversal control units SAV 876.10. The yellow and green keys are used for switching on. The yellow and red keys are used to initiate the polarity reversal process. Any malfunctions detected by the polarity reversal control units are also indicated by a coded flashing signal in the red key. The holding force can be selected in 8 levels.

HAND REMOTE UNIT TYPE SE3

For holding force control at 8 levels for inverse BCD coding, with integrated indicator lights and a 2 m numbered cable, 9-pole. Additional numbered cable available (surcharge applies).

TECHNICAL DATA


- Housing size (LxWxH): 160 x 80 x 60 mm
- Operating voltage: 24 V
- Protection rating: IP 63

SAV 876.02

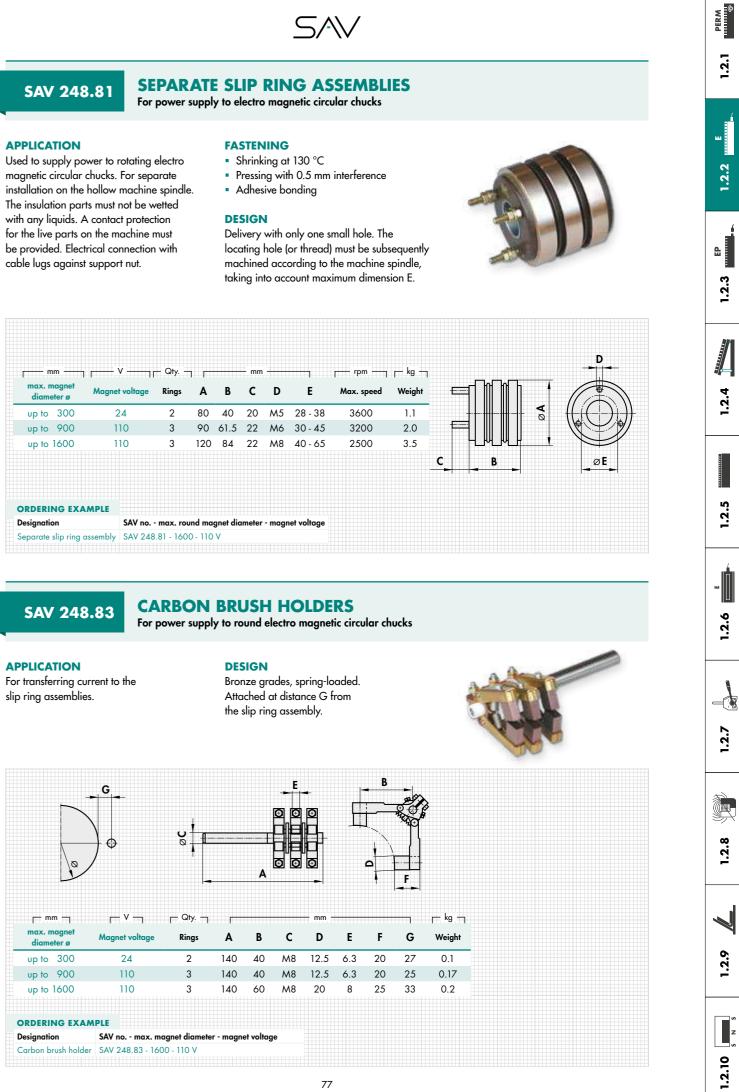
Protection class: III

- SE2

CONTROL ELEMENTS FOR INSTALLATION

CONTROL ELEMENTS TYPE SE2-1 TO SE2-3

2 illuminated push-buttons and coding switch with 8 levels for holding force adjustment with inverse BCD coding Complete set available as type SE2-S.


Coding switch SE2-1

button, green SE2-2 button, red SE2-3

SAV 248.81

г mm	r v i	— Qty. –	1 (***		— mm			ſ
max. magnet diameter ø	Magnet voltage	Rings	Α	В	С	D	E	
up to 300	24	2	80	40	20	M5	28 - 38	
up to 900	110	3	90	61.5	22	M6	30 - 45	
up to 1600	110	3	120	84	22	M8	40 - 65	
ORDERING EXA	MDIE							

1.2. STANDARD MAGNET SYSTEMS 1.2.3 ELECTRO PERMANENT MAGNETIC CHUCKS

ELE

				PAGES 8	84 - 126
	SAV ART. NO.	COMMENTS	POLE PITCH	MACHINING PROCESS*	PAGE
TRO PER		GNETIC CHUCKS			
	243.70	For universal use	13/18/25 mm		84
	243.71	For thin parts, place crosswise	4 mm		86
	243.72	With magnetically active stops	4 mm	₫ ⊙	88
	243.73	For thin parts, place lengthwise	4 mm		90
	243.76	With demagnetising, for hard milling	35/65/85 mm	0	94
	220.76	With demagnetising, for hard milling	35/65 mm	0	94
25	243.77	For thinner parts, softer workpieces	27.5 mm	0	96
	243.77	For universal use with pole shoes, soft workpieces	55 mm	0	98
	243.77	For thick workpieces with pole shoes, soft workpieces	85 mm	0	99
	243.77-RAIL	For machining railway rails	_	0	100
	243.78	Universal, with demagnetising, hard milling	Round pole	0	102
	243.79	For universal machining, HSC milling, for soft workpieces	Hexagonal pole	0	104
	243.80	Universal, fully metallic pole surface	Square pole	0	105
	242.92	Electro permanent magnetic chuck towers	-	0	106
	248.70	Pole raiser rectangular/round	-	0	108
RO PER		GNETIC CIRCULAR CHUCKS			
	244.70	For thin rings	Radial pole pitch		110
	244.71	For thin rings, for hard milling	Radial pole pitch		112
	244.72	For thin parts, for multiple parts	Circular pole pitch		116
-	244.73	For thin parts	Parallel pole pitch		118
	244.74	High holding forces for thin parts	Parallel pole pitch		119
	244.76	Combination chuck	Radial pole pitch		120
RONIC	POLARITY-REV	VERSING CONTROL UNIT/CURRENT	TRANSMITTERS		
	876.17	For electronic actuation on ep chucks		-	122
	876.02	For manual operation		-	124
ON BR	USH HOLDER/	SLIP RING ASSEMBLIES			
	248.84	Carbon brush holder		-	125
H	248.85	Slip ring body		-	125
	248.86	Rotating connector		-	126
ion of the icor	ns on page 4				
		79			

ELEC

				PAGES 8	4 - 126	
	SAV ART. NO.	COMMENTS	POLE PITCH	MACHINING PROCESS*	PAGE	1.2.2
TRO PE		GNETIC CHUCKS				F
	243.70	For universal use	13/18/25 mm		84	_
	243.71	For thin parts, place crosswise	4 mm		86	8
	243.72	With magnetically active stops	4 mm	<u> </u>	88	1.2.3
	243.73	For thin parts, place lengthwise	4 mm		90	-i
	243.76	With demagnetising, for hard milling	35/65/85 mm	<u></u>	94	
	220.76	With demagnetising, for hard milling	35/65 mm	0 🛯	94	
2	243.77	For thinner parts, softer workpieces	27.5 mm	0 🛯	96	1.2.4
and a	243.77	For universal use with pole shoes, soft workpieces	55 mm	0 🛯	98	÷
	243.77	For thick workpieces with pole shoes, soft workpieces	85 mm	0	99	
	243.77-RAIL	For machining railway rails	-	0	100	
	243.78	Universal, with demagnetising, hard milling	Round pole	0	102	1.2.5
	243.79	For universal machining, HSC milling, for soft workpieces	Hexagonal pole	0	104	-
	243.80	Universal, fully metallic pole surface	Square pole	0	105	
	242.92	Electro permanent magnetic chuck towers	-	0 📕	106	-
	248.70	Pole raiser rectangular/round	-	0 🛯	108	1.2.6
TRO PE		GNETIC CIRCULAR CHUCKS				-
	244.70	For thin rings	Radial pole pitch		110	١
	244.71	For thin rings, for hard milling	Radial pole pitch		112	-()
	244.72	For thin parts, for multiple parts	Circular pole pitch		116	1.2.7
LAS	244.73	For thin parts	Parallel pole pitch		118	
	244.74	High holding forces for thin parts	Parallel pole pitch		119	Ì.
	244.76	Combination chuck	Radial pole pitch		120	\$
	POLARITY-REV	VERSING CONTROL UNIT/CURRENT	TRANSMITTERS			1.2.8
	876.17	For electronic actuation on ep chucks		-	122	
	876.02	For manual operation		-	124	Ĩ
BON BR	USH HOLDER/	SLIP RING ASSEMBLIES				6.
	248.84	Carbon brush holder		-	125	1.2.9
	248.85	Slip ring body		-	125	
	248.86	Rotating connector		-	126	
ntion of the icor	s on page 4					0

ELE

				PAGES 8	4 - 126	
	SAV ART. NO.	COMMENTS	POLE PITCH	MACHINING PROCESS*	PAGE	
ECTRO PE		GNETIC CHUCKS				
	243.70	For universal use	13/18/25 mm		84	
	243.71	For thin parts, place crosswise	4 mm		86	£
	243.72	With magnetically active stops	4 mm		88	
	243.73	For thin parts, place lengthwise	4 mm		90	
	243.76	With demagnetising, for hard milling	35/65/85 mm	<u></u>	94	
	220.76	With demagnetising, for hard milling	35/65 mm	<u>o</u> 🛽	94	
2	243.77	For thinner parts, softer workpieces	27.5 mm	<u></u>	96	
Contract of the second	243.77	For universal use with pole shoes, soft workpieces	55 mm	<u> </u>	98	
	243.77	For thick workpieces with pole shoes, soft workpieces	85 mm	0	99	
	243.77-RAIL	For machining railway rails	-	0 🛯	100	
	243.78	Universal, with demagnetising, hard milling	Round pole	0	102	
	243.79	For universal machining, HSC milling, for soft workpieces	Hexagonal pole	0 🛯	104	•
	243.80	Universal, fully metallic pole surface	Square pole	0	105	
	242.92	Electro permanent magnetic chuck towers	-	0 🛯	106	
	248.70	Pole raiser rectangular/round	-	0	108	
LECTRO PE		GNETIC CIRCULAR CHUCKS				
	244.70	For thin rings	Radial pole pitch		110	
	244.71	For thin rings, for hard milling	Radial pole pitch		112	
	244.72	For thin parts, for multiple parts	Circular pole pitch		116	
44	244.73	For thin parts	Parallel pole pitch		118	
	244.74	High holding forces for thin parts	Parallel pole pitch		119	Ĩ
	244.76	Combination chuck	Radial pole pitch		120)))
ECTRONIC		VERSING CONTROL UNIT/CURRENT	TRANSMITTERS			
	876.17	For electronic actuation on ep chucks		-	122	
	876.02	For manual operation		-	124	4
ARBON BI	RUSH HOLDER/	SLIP RING ASSEMBLIES				
	248.84	Carbon brush holder		-	125	
	248.85	Slip ring body		-	125	
	248.86	Rotating connector		-	126	
lanation of the ice	ons on page 4					6

				PAGES 8	4 - 126	
	SAV ART. NO.	COMMENTS	POLE PITCH	MACHINING PROCESS*	PAGE	1.2.2
ECTRO PE	RMANENT MA	GNETIC CHUCKS				-
	243.70	For universal use	13/18/25 mm		84	
	243.71	For thin parts, place crosswise	4 mm		86	£
	243.72	With magnetically active stops	4 mm	₫ ⊙	88	с С
	243.73	For thin parts, place lengthwise	4 mm		90	-
	243.76	With demagnetising, for hard milling	35/65/85 mm	<u></u>	94	
	220.76	With demagnetising, for hard milling	35/65 mm	0	94	
2	243.77	For thinner parts, softer workpieces	27.5 mm	<u></u>	96	С С Г
and the second second	243.77	For universal use with pole shoes, soft workpieces	55 mm	0	98	-
	243.77	For thick workpieces with pole shoes, soft workpieces	85 mm	0	99	
	243.77-RAIL	For machining railway rails	-	0	100	
	243.78	Universal, with demagnetising, hard milling	Round pole	0	102	4 C
	243.79	For universal machining, HSC milling, for soft workpieces	Hexagonal pole	0	104	_
	243.80	Universal, fully metallic pole surface	Square pole	0	105	
	242.92	Electro permanent magnetic chuck towers	-	0	106	
	248.70	Pole raiser rectangular/round	-	0	108	V C F
ECTRO PE		GNETIC CIRCULAR CHUCKS				_
	244.70	For thin rings	Radial pole pitch		110	
	244.71	For thin rings, for hard milling	Radial pole pitch		112	=
	244.72	For thin parts, for multiple parts	Circular pole pitch		116	- C -
	244.73	For thin parts	Parallel pole pitch	4	118	
	244.74	High holding forces for thin parts	Parallel pole pitch		119	Ť
	244.76	Combination chuck	Radial pole pitch		120	9
ECTRONI	C POLARITY-RE	VERSING CONTROL UNIT/CURRENT	TRANSMITTERS			
	876.17	For electronic actuation on ep chucks		-	122	
	876.02	For manual operation		-	124	4
ARBON B	RUSH HOLDER/	SLIP RING ASSEMBLIES				0
	248.84	Carbon brush holder		-	125	
	248.85	Slip ring body		-	125	
	248.86	Rotating connector		-	126	
lanation of the ic						6

* Explanation of the icons on page 4

SAV

CHAPTER

EP

PERM

1.2.1

PAGES 84 - 126

SELECTION CRITERIA

Suitable for palletising with connector

shorter cycle durations possible on request

Maximum operational reliability

PROPERTIES

milling

SAV 243.70

SAV 243.71

SAV 243.72

SAV 243.73

SAV 243.76 SAV 220.76

SAV 243.76 SAV 220.76

SAV 243.76 SAV 220.76

p=85

p=35

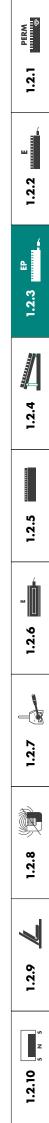
SELECTION CRITERIA

ELECTRO PERMANENT MAGNETIC CHUCKS

ELECTRO PERMANENT MAGNETIC CHUCKS

possible

• Force generated by a current pulse with a duration of 800 ms Environmentally friendly, no continuous energy consumption FACE MILLING AND CONTOUR MILLING WELD SEAM PREPARATION POCKET AND WINDOW MILLING • No thermal expansion, highest precision during grinding MILLING/DRILLING IN UNIVERSAL APPLICATION Also with demagnetising cycle, depending on the design – for hard **MILLING FROM 5 SIDES** • Extreme holding forces for magnetic chucks for milling Designed for shortest cycle duration of 3 min (time from part to part), HARD MILLING • Holding force and demagnetising can be controlled with a control unit PALLETISING HSC MILLING **RAIL MILLING** GRINDING 5AV 242.92 Low magnetic field with narrow, page 84 Universal transverse pole pitch page true transverse pole pitch p=27.5 243.77 For thin workpieces with min. Low magnetic field with extreme contact length of 40 mm, workpage 86 holding force and very good air page 9 piece orientation perpendicular SAV gap characteristics to the pole division direction p=55 SAV 243.77 With magnetically active stops Extreme holding force, for univerpage 88 for automatic workpiece alignpage sal use, pole shoes possible ment for thin parts Extreme holding force for thicker p=85 For thin workpieces with min. SAV 243.77 and larger workpieces, very contact length of 40 mm, workpage 90 good air gap characteristics page 9 piece orientation parallel to the for chucking blanks, pole shoes pole division direction possible SAV 243.77-Rail With magnetically active stops With demagnetising cycle, for for workpiece alignment, for rail page 94 page machining, for manufacturing thin workpieces railway points SAV 243.78 Universal application for different With demagnetising cycle, V V V part geometries, for thin plates, page 94 for universal use, pole shoes page 1 use of pole shoes (mobile and fixed) possible SAV 243.79 With demagnetising cycle, for Universal use with even pole thicker and larger workpieces, page 94 page division, pole shoes possible pole shoes possible SAV 243.80 Universal use with high output at



page

low costs, square pole pitch

		_ 	ING O	\bigcirc		\bigcirc	0
	GRINDING	MILLING/DRILLING IN UNIVERSAL APPLICATION	POCKET AND WINDOW MILLING	MILLING FROM 5 SIDES	FACE MILLING AND CONTOUR MILLING WELD SEAM PREPARATION	PALLETISING HSC MILLING	RAIL MILLING
106	_	~	~	~	_	_	_
97	_	_	~	~	~	_	-
98	_	~	~	~	_	_	_
99	_	_	_	~	_	_	_
100	_	_	_	_	_	_	~
102	_	~	~	~	_	~	-
104	_	~	~	~	_	~	_
105	_	~	_	V	_		_

SELECTION CRITERIA

ELECTRO PERMANENT MAGNETIC CIRCULAR CHUCKS

(cha	e information on maximum sp pter 1.4.7) request, power supply also wi				\bigtriangleup	\bigtriangleup
statio	on for easy spindle integratio dle flange possible on reques	n		CYLINDRICAL GRINDING	TURNING	HARD TURNING
SAV 244.70		For ring-shaped workpieces, use of pole shoes possible to create free space for tools	page 110	~	~	_
SAV 244.71		Increased holding force, also for hard turning of ring-shaped workpieces, use of pole shoes possible to create free space for tools	page 112	~	~	V
SAV 244.72		For multiple workpieces on dividing circle and thin plates, centre is not magnetic	page 116	~	~	_
SAV 244.73		For thin plates, centre is magnetic	page 118	~	_	-
SAV 244.74		For thin plates, for extreme machining	page 119	~	~	_
SAV 244.76	(in	For plates from 8 mm thickness, for extreme machining capacity	page 120	V	~	_

ELECTRO PERMANENT MAGNETIC CHUCKS With continuous transverse pole pitch P = 13 mm, 18 mm and 25 mm

The magnetic force is generated by the permanent magnets which are magnetised and demagnetised with short current pulses. The block magnet features a sturdy design and a long service life. The pole pitch forms "true" N and S poles.

DESIGN

- Solid pole plate with 13 mm, 18 mm or 25 mm transverse pole pitch
- "True" N/S pole spacing
- Switch-off using demagnetising cycle
- Electro permanent magnetic system for absolute safety in case of power failure.
- On request available with compressed air holes for P = 18/25 mm for easier removal of larger parts (adhesion)
- High accuracy thanks to pole plates bolted in a narrow grid
- Reinforced systems for high wear possible on request
- 8 mm wear layer on the pole plate
- Pole plate can be replaced when worn
- Chucking slots on both face sides
- Length over 1000 mm with through holes for fastening upon agreement or machine table
- Robust and water-tight
- Protection rating IP 65

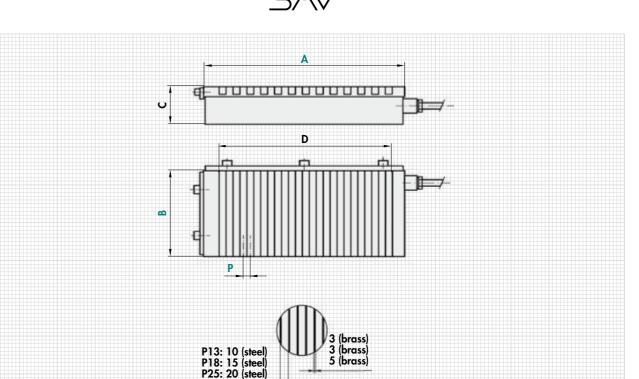
RATED HOLDING FORCE

90 N/cm², with P = 13 mm pole pitch 110 N/cm², with P = 18 mm pole pitch 115 N/cm², with P = 25 mm pole pitch Controllable with control unit.

RATED VOLTAGE, RECOMMENDED

210 V IMP up to size A x B = 600 x 400 **360 V IMP** above size $A \times B = 600 \times 400$

APPLICATION


For universal chucking of workpieces with high precision.

- For main workpiece axis perpendicular to the pole pitch
- For workpieces up to min. thickness x: 4.5 mm with P = 13 mm6.0 mm with P = 18 mm 8.5 mm with P = 25 mm
- For flat workpieces min. a: $25 \text{ mm} \times 25 \text{ mm}$ with P = 13 mm $32 \text{ mm} \times 32 \text{ mm}$ with P = 18 mm $45 \text{ mm} \times 45 \text{ mm}$ with P = 25 mm

□a

SCOPE OF DELIVERY

- Stop bar on one short and one long side
- 3 m connecting cable on right short side, rear
- On request with water-tight heavy-duty power connector
- Larger magnetic chucks from 25 kg are provided with lifting lugs for transport
- Control and hand remote unit not in the scope of delivery
- Clamps

		- mm -		1	г— kg —	<u>г</u> v –	г А
A	В	C ₋₁ ⁰	D	Р	Weight	Rated voltage	Control max. pul. Current
200	100	80	120	13	11.0	210	30
300	100	80	224	13	17.0	210	30
300	150	80	224	13	25.0	210	30
400	150	80	328	13	34.0	210	30
450	175	80	381	18	44.0	210/360	30
400	200	80	345	18	45.0	210/360	30
500	200	80	417	18	56.0	210/360	30
600	200	80	525	18	67.0	210/360	30
800	200	80	705	18	90.0	210/360	30
500	250	80	417	18	70.0	210/360	30
600	250	80	525	18	84.0	210/360	30
800	250	80	705	18	112.0	210/360	30
500	300	80	417	18	90.0	210/360	30
600	300	80	525	18	108.0	210/360	30
800	300	80	705	18	145.0	210/360	30
1000	300	80	930	18	180.0	210/360	30
600	350	80	525	18	126.0	210/360	30
800	350	80	705	18	168.0	210/360	30
1000	350	80	921	18	210.0	210/360	30
			ages on re			فنمعما أمام مرتف	

Larger chucking areas can be implemented by joining several blocks without gaps. Allocation to the correct control unit is based on the max. power consumption/magnet voltage

ORDERING EXAMPLE

SAV no. - A x B - pole pitch - rated voltage Designation Electro permanent magnetic chuck SAV 243.70 - 2000 x 800 - 25 - 360 V

	ſ		- mm —		1	г— kg —	V	г А,
	A	В	C .1	D	Р	Weight	Rated voltage	Control max. pul. Current
ľ	600	400	80	525	18	145.0	210/360	30
	700	400	80	633	18	169.0	360	30
	800	400	80	705	18	193.0	360	30
	1000	400	80	921	18	240.0	360	30
	1200	400	90	1137	18	289.0	360	30
	800	500	80	730	25	241.0	360	30
	1000	500	80	930	25	301.0	360	30
	1200	500	90	1130	25	361.0	360	30
	1250	500	90	1180	25	376.0	360	30
	1500	500	90	1430	25	450.0	360	30
	1600	500	90	1520	25	480.0	360	60
	2000	500	90	1930	25	602.0	360	60
	1000	600	80	930	25	361.0	360	30
	1200	600	90	1130	25	433.0	360	30
	1250	600	90	1180	25	451.0	360	30
	1500	600	90	1430	25	542.0	360	30
	1600	600	90	1520	25	578.0	360	60
	2000	600	90	1930	25	722.0	360	60
	1500	800	90	1430	25	723.0	360	60
	1600	800	90	1520	25	771.0	360	60
	2000	800	90	1930	25	963.0	360	60

1.2.10

ELECTRO PERMANENT MAGNETIC CHUCKS

With continuous fine longitudinal pole pitch P = 4 mm

Electro permanent magnetic systems with very narrow pole pitch. The magnetic force is generated by the permanent magnets which are magnetised and demagnetised with short current pulses. Especially suitable for thin parts. Main workpiece axis at right angle to the magnet length.

DESIGN

- Pole plate with particularly narrow, continuous longitudinal pole pitch, 3 mm steel and 1 mm brass
- Pole divisions bonded and additionally bolted together solidly with tie rods
- High accuracy thanks to pole plates bolted in a narrow grid
- Switch-off using demagnetising cycle
- 8 mm wear layer on the pole plate
- Low magnetic field height of 4 mm
- Electro permanent magnetic system for absolute safety in case of power failure
- Chucking slots on both face sides
- Reinforced systems for high wear possible on request
- Length over 1000 mm with through holes for fastening upon agreement
- Robust and water-tight
- Protection rating IP 65

RATED HOLDING FORCE

100 N/cm², Controllable with control unit

RATED VOLTAGE, RECOMMENDED

210 V IMP up to size A x B = 600 x 250 **360 V IMP** above size A x B = 600 x 250

APPLICATION

For chucking thin, flat workpieces with high precision.

 For main workpiece axis perpendicular to the pole pitch

- For thin workpieces up to: min. thickness = 2 mm
- For flat workpieces:

SCOPE OF DELIVERY

min. width = 40 mm

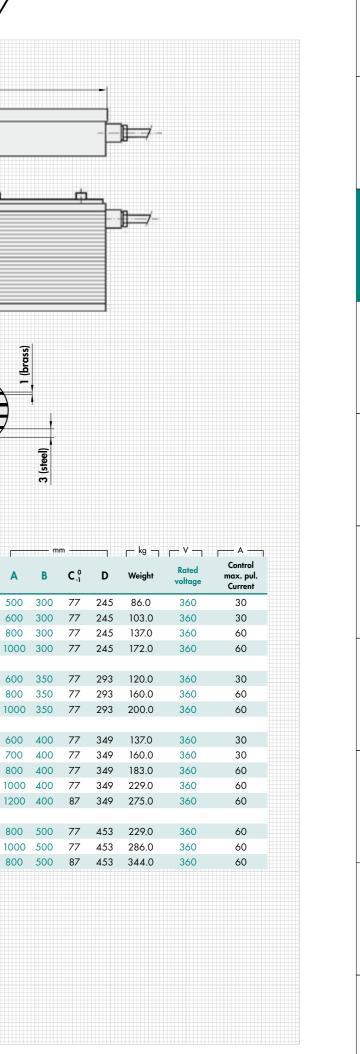
- Stop bar on one short and one long side
- 3 m connecting cable on right short side, rear
- On request with water-tight heavy-duty power connector
- Larger magnetic chucks are provided with lifting lugs for transport
- Control and hand remote unit not in the scope of delivery
- Clamps

86

O

æ Δ

Other sizes and rated voltages on request. Larger chucking areas can be implemented by joining several blocks without gaps. Allocation to the correct control unit is based on the max. power consumption/magnet voltage.


800 250 77 201 112.0

ORDERING EXAMPLE SAV no. - A x B - rated voltage Designation Electro permanent magnetic chuck SAV 243.71 - 1200 x 400 - 360 V

-		r kg -	г- v	г А	Г
C .1	D	Weight	Rated voltage	Control max. pul. Current	
77	53	12.0	210	30	50
77	53	18.0	210	30	60
					8
77	101	26.0	210	30	10
77	101	34.0	210	30	
					60
77	125	44.0	210/360	30	8
					10
77	149	45.0	210/360	30	
77	149	56.0	210/360	30	60
77	149	67.0	210/360	30	70

360

30

PERM (1) 1.2.1 -1.2.2 8 1.2.3 1.2.4 1.2.5 1.2.6 _ 1.2.7 Ì 1.2.8 1.2.9

1.2.10

SAV 243.72

ELECTRO PERMANENT MAGNETIC CHUCKS With fine longitudinal pole pitch P = 4 mm and magnetisable stop bars

The newly developed workholding system allows workpieces to be reliably pulled against the stop using magnetisable stops. Insertion errors can be prevented with this, particularly in shift operation. Electro permanent magnetic systems with very narrow pole pitch.

The magnetic force is generated by the permanent magnets which are magnetised and demagnetised with short current pulses. Especially suitable for thin parts.

DESIGN

- Design with 2 strong bipolar systems for the stop bar, for reliable alignment of the parts. The stop magnet works at a time offset to the base magnet
- The stop bars are magnetised before the main chucking area. This reliably pulls the workpiece into the lower corner of the stop.
- Pole plate with particularly narrow, continuous longitudinal pole pitch, 3 mm steel and 1 mm brass
- Pole divisions bonded and additionally bolted together solidly with tie rods
- High accuracy thanks to pole plates bolted in a narrow grid
- Switch-off using demagnetising cycle
- 8 mm wear layer on the pole plate
- Low magnetic field height of 4 mm
- Electro-permanent magnetic system for absolute safety in case of power failure
- Chucking slots on both face sides
- Reinforced systems for high wear possible on request
- Length over 1000 mm with through holes for fastening upon agreement
- Robust and water-tight
- Protection rating IP 65

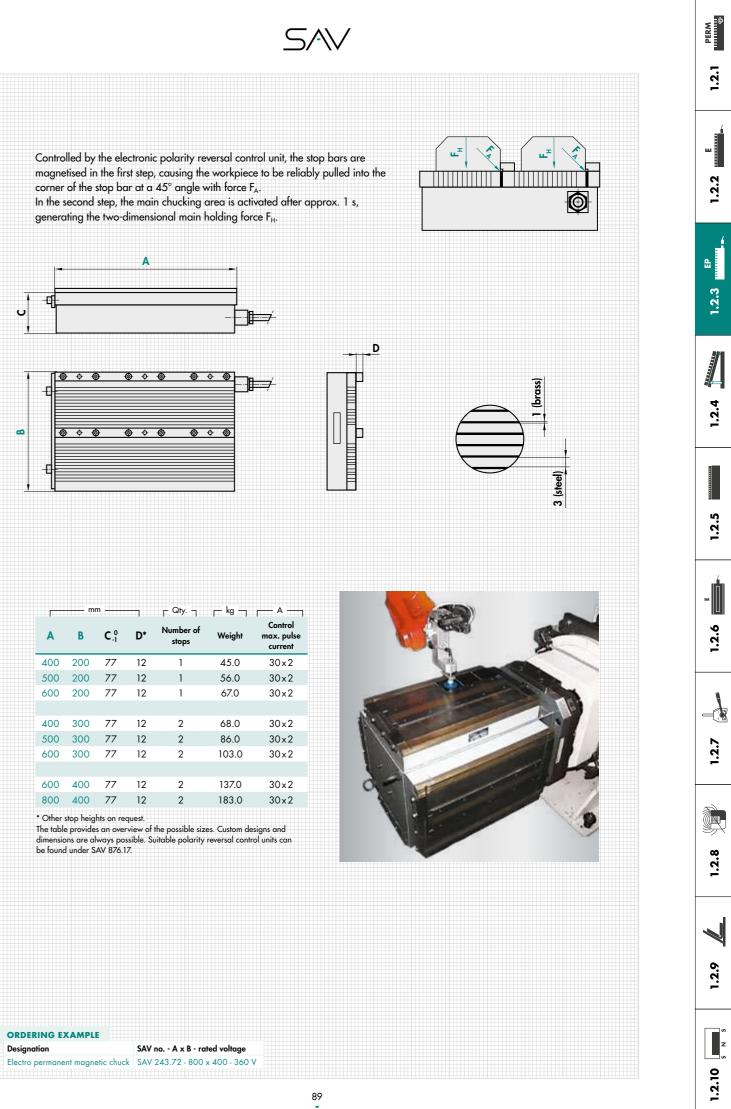
RATED HOLDING FORCE

100 N/cm². Controllable with control unit

RATED VOLTAGE, RECOMMENDED 360 V IMP

APPLICATION

Primarily for precise grinding of mass-produced parts, especially in shift operation. For toolmaking, the system allows precision machining to the µm relative to the reference edge against the stop.


- Magnetically active stops automatically controlled in sequence
- For thin workpieces up to: min. thickness = 12 mm (depending on stop height)

For flat workpieces:

min. width = 40 mm

- **SCOPE OF DELIVERY** • 1 or 2 magnetic stop bars
- 3 m connecting cable on right short side, rear
- On request with water-tight heavy-duty power connector
- Larger magnetic chucks are provided with lifting lugs for transport
- Control and hand remote unit not in the scope of delivery
- Clamps

SAV no. - A x B - rated voltage

	mi	n	_	— C ^t y kg —				
A	В	C _1	D*	Number of stops	Weight	Control max. pulse current		
400	200	77	12	1	45.0	30×2		
500	200	77	12	1	56.0	30×2		
600	200	77	12	1	67.0	30×2		
400	300	77	12	2	68.0	30×2		
500	300	77	12	2	86.0	30x2		
600	300	77	12	2	103.0	30x2		
600	400	77	12	2	137.0	30×2		
800	400	77	12	2	183.0	30x2		

SAV 243.73

ELECTRO PERMANENT MAGNETIC CHUCKS

With continuous fine transverse pole pitch P = 4 mm

Precision grinding magnet with very narrow pole pitch. The magnetic force is generated by the permanent magnets which are magnetised and demagnetised with short current pulses.

DESIGN

- Pole plate with particularly narrow, continuous transverse pole pitch, 3 mm steel and 1 mm brass.
- Pole divisions bonded and additionally bolted together solidly with tie rods lengthwise
- High accuracy thanks to pole plates bolted in a narrow grid
- Switch-off using demagnetising cycle
- 8 mm wear layer on the pole plate
- Low magnetic field height of 4 mm
- Electro-permanent magnetic system for absolute safety in case of power failure
- Chucking slots on both face sides
- Reinforced systems for high wear possible on request
- Length over 1000 mm with through holes for fastening upon agreement
- Robust and water-tight
- Protection rating IP 65

RATED HOLDING FORCE

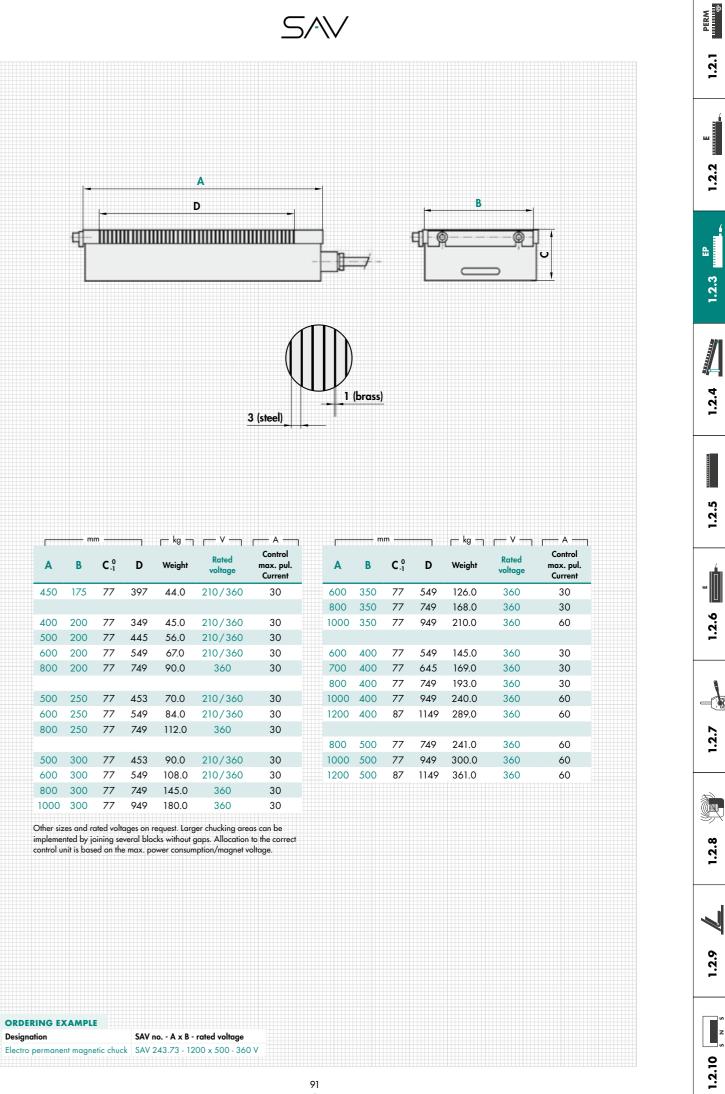
100 N/cm², Controllable with control unit

RATED VOLTAGE, RECOMMENDED

210 V IMP up to size A x B = 600 x 300 **360 V IMP** above size A x B = 600 x 300

APPLICATION

- For chucking thin, flat workpieces with high precision.
- For main workpiece axis perpendicular to the pole pitch



- For thin workpieces up to: min. thickness = 2 mm
- For flat workpieces: min. length = 40 mm

□ **40**

SCOPE OF DELIVERY

- Stop bar on one short and one long side
- 3 m connecting cable on right short side, rear
- On request with water-tight heavy-duty power connector
- Larger magnetic chucks are provided with lifting lugs for transport
- Control and hand remote unitn not in the scope of delivery
- Clamps

	г— А —	v	r kg -		m	mi	
	Control max. pul. Current	Rated voltage	Weight	D	C .1	В	A
	30	210/360	44.0	397	77	175	450
8							
1	30	210/360	45.0	349	77	200	400
	30	210/360	56.0	445	77	200	500
e	30	210/360	67.0	549	77	200	600
7	30	360	90.0	749	77	200	800
8							
1	30	210/360	70.0	453	77	250	500
1	30	210/360	84.0	549	77	250	600
	30	360	112.0	749	77	250	800
8							
1	30	210/360	90.0	453	77	300	500
1	30	210/360	108.0	549	77	300	600
	30	360	145.0	749	77	300	800
	30	360	180.0	949	77	300	1000
		1 1.					

Designation Electro permanent magnetic chuck SAV 243.73 - 1200 x 500 - 360 V

APPLICATION OVERVIEW FOR SAV MILLING MAGNETS

UNIVERSAL APPLICATION

SELECTION CRITERIA

- Uniform pole division
- Flexible workpiece dimensions and arrangement

MACHINING EXAMPLE

- Workpiece: 500 x 500 x 50 mm • Material: C 45
- Feed rate: 1100 mm/min • Cutting depth: 6 mm
- No. of teeth: 3
- Feed: 10 mm
- Machining volume: 360 cm³/min

PRODUCTS SAV 243.11 SAV 243.76

- SAV 243.77
- SAV 243.78
- SAV 243.79
- SAV 243.80

FACE AND CONTOUR MACHINING OF THIN WORKPIECES, WELD SEAM PREPARATION

 $S^{\}$

SELECTION CRITERIA

 Low field height with high holding forces for pulling down thin parts

MACHINING EXAMPLE

- Workpiece: 200 x 80 x 15 mm
- Material: St 52-3
- Feed rate: 1400 mm/min
- Cutting depth: 15 mm
- No. of teeth: 4
- Machining volume: 135 cm³/min

POCKET AND WINDOW MILLING

SELECTION CRITERIA

- Low magnetic field
- High holding forces
- Good swarf discharge

MACHINING EXAMPLE

- Workpiece: 400 x 400 x 80 mm
- Material: 16 MnCr5
- Feed rate: 800 mm/min
- Cutting depth: 15 mm
- No. of teeth: 6
- Machining volume: 530 cm³/min

PRODUCTS

- SAV 243.76-35 SAV 243.76-60
- SAV 243.77-27.5
- SAV 243.78
- SAV 243.79

PRODUCTS

SAV 243.76

SAV 243.77

SAV 243.79 SAV 243.80

MACHINING FROM 5 SIDES

SELECTION CRITERIA

- High holding forces
- Access from 5 sides
- Low-deformation chucking

MACHINING EXAMPLE

- Workpiece: 500 x 500 x 60 mm
- Material: 16 MnCr5
- Feed rate: 2000 mm/min
- Cutting depth: 6 mm
- No. of teeth: 6
- Feed: 10 mm
- Machining volume: 650 cm³/min

SELECTION CRITERIA PRODUCTS Energy-independent SAV 220.79 SAV 220.31

PALLETISING HSC MACHINING

- Low field height
- Operational safety
- Precision

MACHINING EXAMPLE

- Workpiece: 150 x 150 mm
- Material: 16 MnCr45, HRC 52
- Feed rate: 2500 mm/min
- Cutting depth: 1 mm
- No. of teeth: 4
- Machining volume: 50 cm³/min

RAIL MILLING

SELECTION CRITERIA

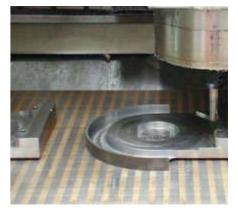
- Extreme air gap characteristics
- High holding forces
- Extremely robust and wear-resistant

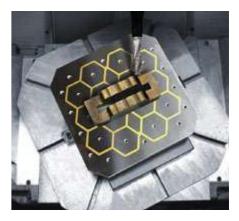
MACHINING EXAMPLE

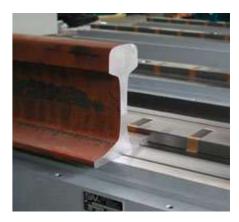
- Workpiece: UIC 60
- Material: Rail steel
- Machining cross-section: 40 × 35 mm
- Machine output: up to 130 kW

93

PRODUCTS


SAV 243.76


- SAV 243.77-Rail



SAV 243.77-27.5 SAV 243.78

Please contact us. We ensure optimum productivity for your application.

SAV 243.76/ SAV 220.76 ELECTRO PERMANENT MAGNETIC CHUCKS With transverse pole pitch P = 35, 65, 85 mm

0

Milling magnet also for hard machining. Amplified magnet system with demagnetising cycle. Optimised system for high holding forces. Magnetically fully saturated system thanks to flux concentration. Design SAV 220.76 square (pallet), Design SAV 243.76 rectangular.

SAV 220.76 Pole pitch 35, 65

SAV 243.76 Pole pitch 35, 65, 85

DESIGN

- System for optimised holding force with demagnetising cycle
- Complete surface magnetically active, no "dead zones"
 Solid monoblock design
- Solid monoblock design
 Electro-permanent magnetic system for absolute safety in case of power
- failure.
- With heavy-duty power connector at front right
- Pole gap with brass, wear-protected
- 8 mm wear layer on the pole plate
- Optionally with grid thread drilling template for pole bars or pole shoes possible (M)
- Pole pitch 65 mm and 85 mm optionally with T-slots DIN 650-10H10 (T)
- Chucking slots on the short sides
- Square versions SAV 220.76 optionally with zero point workholding system upon agreement
- Robust and water-tight
- Protection rating IP65

RATED HOLDING FORCE

 $\begin{array}{l} 80 \ \text{N/cm}^2 \ \text{with} \ \text{P} = 35 \ \text{mm} \\ 100 \ \text{N/cm}^2 \ \text{with} \ \text{P} = 65 \ \text{mm} \\ 160 \ \text{N/cm}^2 \ \text{with} \ \text{P} = 85 \ \text{mm} \end{array}$

Controllable with control unit

RATED VOLTAGE, RECOMMENDED 360 V IMP

APPLICATION Heavy machining

Heavy machining also on pallet changing systems. With demagnetising cycle, therefore also suitable for higher alloy materials or hardened materials.

 For workpieces up to min. thickness x: 8 mm with P = 35 mm
 20 mm with P = 65 mm
 32 mm with P = 85 mm

 For flat workpieces min. a: 70 mm x 70 mm with P = 35 mm 130 mm x 130 mm with P = 65 mm 180 mm x 180 mm with P = 85 mm

SCOPE OF DELIVERY

- With heavy-duty power connector as an option
- Adaptation for zero-point system upon agreement (surcharge applies)
- Larger magnets are provided with lifting lugs for transport
- Robot flanges on request
- Clamps

SAV 220.76-35

 S^{A}

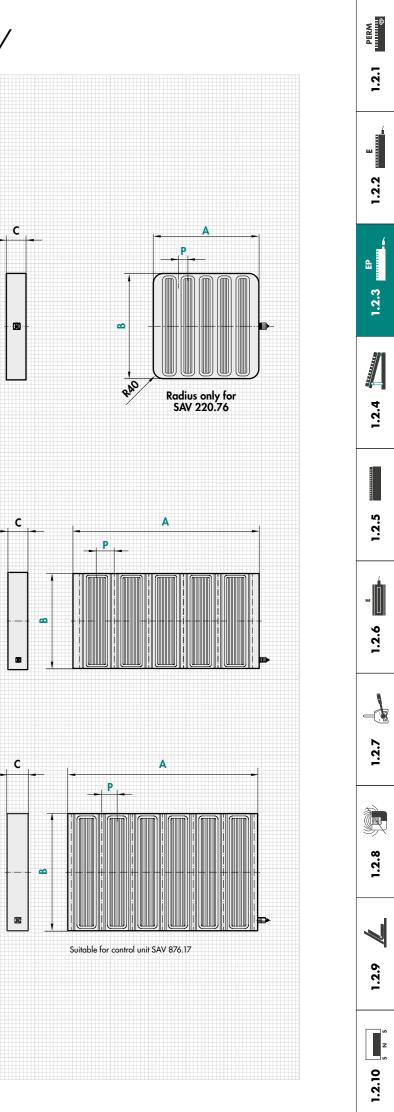
r	m	m ——		r kg -	A
A	В	C ₋₁ ⁰	Ρ	Weight	Control unit max. pul. Current
320	320	90	35	72	30
400	400	90	35	113	30

SAV 243.76-35

	m	m ——		r kg -	A
Α	В	C _1	Ρ	Weight	Control unit max. pul. Current
600	400	90	35	170	60
800	500	90	35	283	60 x 2
1000	500	90	35	354	60 x 2

SAV 220.76-65

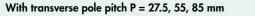
	m	m ——		kg	A
Α	В	C .1	Ρ	Weight	Control unit max. pul. Current
320	320	90	65	72	30
400	400	90	65	113	30

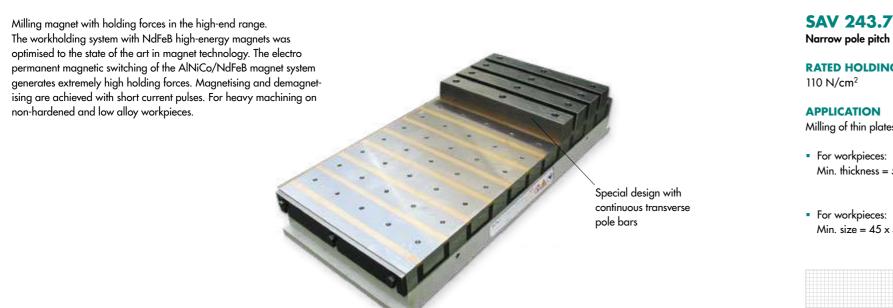

SAV 243.76-65

	m	m ——		r kg -	г А,							
Α	В	C _1	Р	Weight	Control unit max. pul. Current							
580	400	90	65	164	30							
815	500	90	65	288	60							
960	500	90	65	340	60							

SAV 243.76-85

	m	m ——		⊢ kg –	A
Α	В	C .1	Ρ	Weight	Control unit max. pul. Current
610	400	100	85	192	30
800	500	100	85	314	60
980	500	100	85	385	60


ORDERING EXAMPLE Designation SAV no. - A x B - pole pitch - rated voltage - option Electro permanent magnetic chuck 243.76 - 980 x 500 - 85 - 360 V - T



ELECTRO PERMANENT MAGNETIC CHUCKS

HEAVY-DUTY POWER CONNECTOR WITH QUICK-**RELEASE** Optional (surcharge applies)

Easy handling of the plug-in connection

DESIGN

- Optimised high-energy magnet system
- Holding forces in the physically possible maximum range
- The magnet system with great depth action bridges even larger air gaps
- Complete surface magnetically active, no "dead zones"
- 8 mm wear layer on the pole plate
- Solid monoblock design
- "True" N/S pole spacing
- · Electro permanent magnetic system for absolute safety in case of power failure
- Pole gap with brass, wear-protected
- Optionally with tapped hole drilling template (M) for any top tooling
- Pole pitch 85 mm can optionally also be supplied with T-slots (T) as per DIN 650-10H10

RATED HOLDING FORCE

195 N/cm² on inducible steel surface 110 N/cm² with P = 27.5 mm pole pitch 150 N/cm² with P = 55 mm pole pitch 170 N/cm^2 with P = 85 mm pole pitch controllable with control unit using holding force coding switch

RATED VOLTAGE, RECOMMENDED 360 V IMP

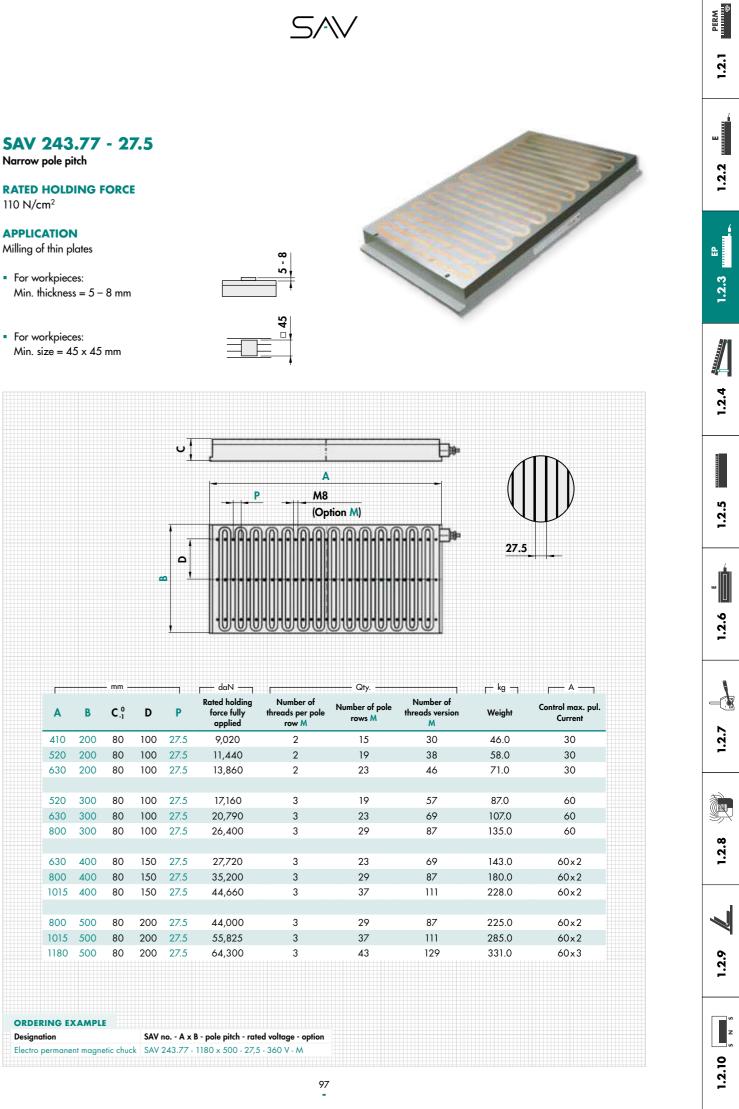
APPLICATION

For heavy milling with high level of material removal. Ideal for use on pallet changing systems.

- For workpieces up to min. thickness x: 8 mm with P = 27.5 mm 18 mm with P = 55 mm38 mm with P = 85 mm
- For flat workpieces min. a: 45 mm x 45 mm with P = 27.5 mm95 mm x 95 mm with P = 55 mm 150 mm x 150 mm with P = 85 mm

SCOPE OF DELIVERY

- 3 m connecting cable on right short side, rear
- On request with water-tight heavy-duty power connector
- Larger magnetic chucks are provided with lifting lugs for transport
- Control and hand remote unit not in the scope of delivery
- Clamps


SAV 243.77 - 27.5

APPLICATION

Milling of thin plates

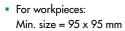
- For workpieces: Min. thickness = 5 - 8 mm
- For workpieces: Min. size = 45×45 mm

_ r ===		- mm -			daN		
A	В	C .1	D	Р	Rated holding force fully applied	Number of threads per pole row M	Nur
410	200	80	100	27.5	9,020	2	
520	200	80	100	27.5	11,440	2	
630	200	80	100	27.5	13,860	2	
520	300	80	100	27.5	17,160	3	
630	300	80	100	27.5	20,790	3	
800	300	80	100	27.5	26,400	3	
630	400	80	150	27.5	27,720	3	
800	400	80	150	27.5	35,200	3	
1015	400	80	150	27.5	44,660	3	
800	500	80	200	27.5	44,000	3	
1015	500	80	200	27.5	55,825	3	
1180	500	80	200	27.5	64,300	3	

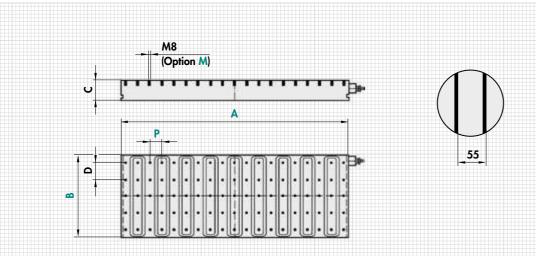
ORDERING EXAMPLE

Designation Electro permanent magnetic chuck SAV 243.77 - 1180 x 500 - 27,5 - 360 V - M 3

SAV 243.77 - 55


Universal pole pitch

RATED HOLDING FORCE 150 N/cm²


APPLICATION

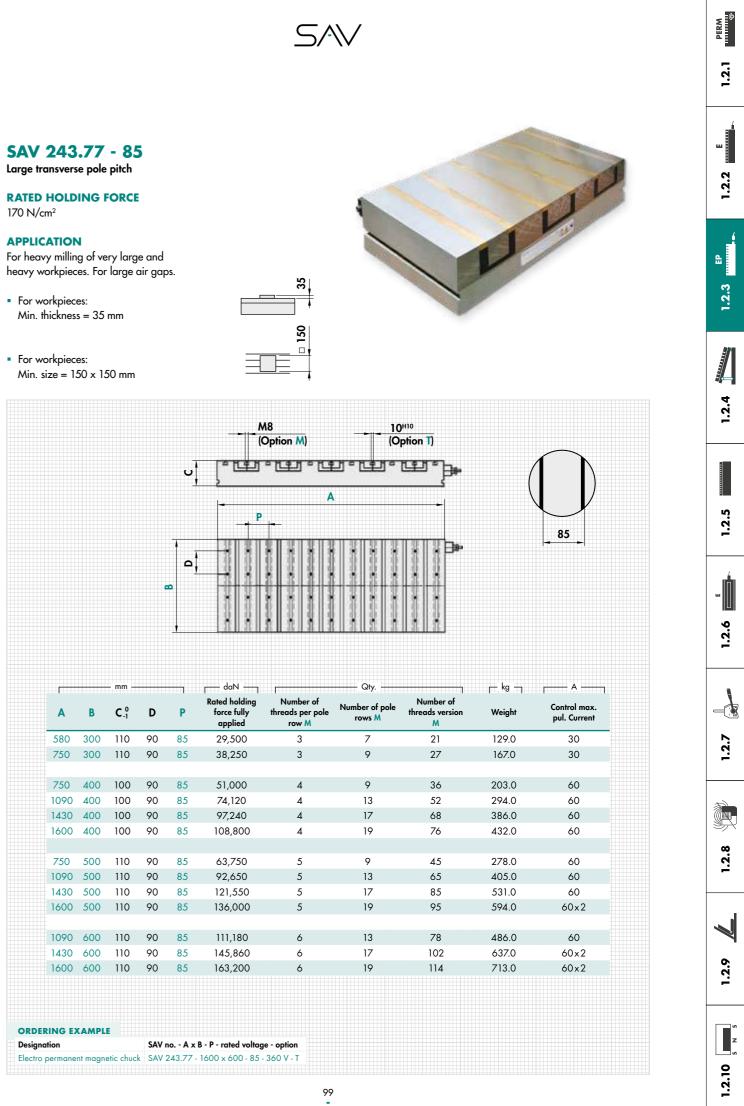
For heavy milling.

• For workpieces: Min. thickness = 20 mm

-		- mm			daN	ſ	Qty	1	kg	A
A	В	C ⁰ -1	D	Р	Rated holding force fully applied	Number of threads per pole row M	Number of pole rows M	Number of threads version M	Weight	Control max. pul. Current
480	300	97	60	55	21,600	4	9	36	94.0	30
590	300	97	60	55	26,550	4	11	44	116.0	30
810	300	97	60	55	36,450	4	15	60	159.0	30
1030	300	97	60	55	46,350	4	19	76	202.0	30
1140	300	97	60	55	51,300	4	23	92	224.0	60
810	400	97	80	55	48,600	5	15	75	212.0	30
1030	400	97	80	55	61,800	5	19	95	270.0	60
1140	400	97	80	55	68,400	5	23	115	299.0	60
1580	400	97	80	55	94,900	5	29	145	414.0	60
2020	400	97	80	55	121,200	5	37	185	529.0	60x2
1030	500	97	70	55	77,250	7	19	133	337.0	60
1140	500	97	70	55	85,500	7	23	161	373.0	60
1580	500	97	70	55	118,500	7	29	203	517.0	60×2
2020	500	97	70	55	151,500	7	37	259	661.0	60x2

ORDERING EXAMPLE SAV no. - A x B - P - rated voltage - option Designation Electro permanent magnetic chuck SAV 243.77 - 1580 x 500 - 55 - 360 V - M

SAV 243.77 - 85


Large transverse pole pitch

RATED HOLDING FORCE 170 N/cm²

APPLICATION

For workpieces: Min. thickness = 35 mm

150

- F		- mm			┌── daN ──┐		
A	В	C .1	D	Р	Rated holding force fully applied	Number of threads per pole row M	Nur
580	300	110	90	85	29,500	3	
750	300	110	90	85	38,250	3	
750	400	100	90	85	51,000	4	
1090	400	100	90	85	74,120	4	
1430	400	100	90	85	97,240	4	
1600	400	100	90	85	108,800	4	
750	500	110	90	85	63,750	5	
1090	500	110	90	85	92,650	5	
1430	500	110	90	85	121,550	5	
1600	500	110	90	85	136,000	5	
1090	600	110	90	85	111,180	6	
1430	600	110	90	85	145,860	6	
1600	600	110	90	85	163,200	6	

ORDERING EXAMPLE Designation

SAV 243.77-RAIL

ELECTRO PERMANENT MAGNETIC SYSTEM

Chucking at bridge and base, on one side – for machining rails and railway points

APPLICATION OPTIONS

For heavy machining of the running faces, feet and fishplate seating of rails. The one-part or two-part magnet system allows lateral alignment in the first step (F_A) . Then the main magnet is activated in the base (F_H) .

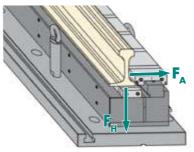
DESIGN

- Dual high-energy magnet system
- Holding forces in the physically possible maximum range
- The magnet system with great depth action bridges even larger air gaps up to 10 mm
- Solid monoblock design
- Pole gap with brass, wear-protected

RATED VOLTAGE, RECOMMENDED 360 V IMP

RATED HOLDING FORCE

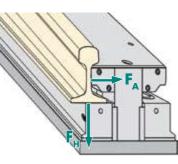
195 N/cm² on inducible steel surface



LATERAL CHUCKING ON THE WEB 1 row

DESIGN

- Milling of running faces and feet
- 1-row version
- Side stop also as exchangeable pole bar for alternative head/web stop

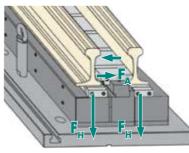


F_A for lateral alignment of the workpieces. F_H generated by base magnet in the second step

LATERAL CHUCKING ON THE WEB 2 row

DESIGN

- Milling of running faces and feet
- 2-row version



F_A for lateral alignment of the workpieces. F_H generated by base magnet in the second step.

LATERAL CHUCKING ON THE FOOT 2 row

DESIGN

- Compact design suitable tongue and regular profiles
- Pole gap with brass, wear-protected

 F_{A} for lateral alignment of the workpieces. F_{H} generated by base magnet in the second step

SAV 243.78

ELECTRO PERMANENT MAGNETIC CHUCKS With universal round pole pitch <u></u>

For large-area, thin parts, e.g. for widening weld seams.

DESIGN

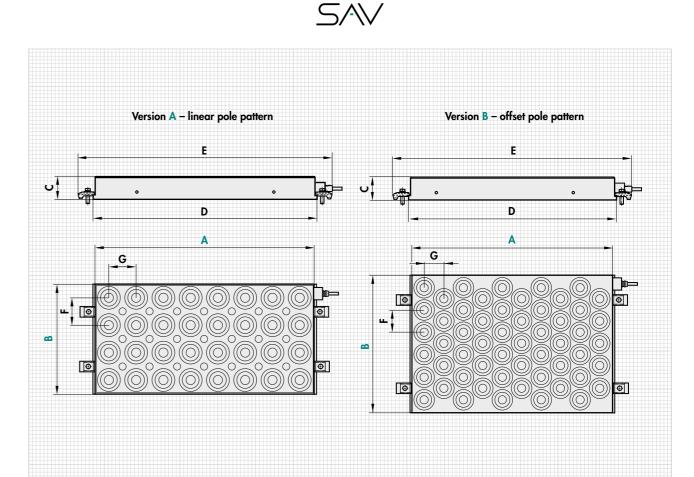
- Steel pole diameter 60 mm
- Design with linear (A) or offset (B) pole grid
- Larger systems as combination of several magnets
- Complete surface magnetically active also for direct placement
- Solid monoblock design with demagnetising cycle
- Robust and water-tight
- Protection rating IP 65
- Electro-permanent magnetic system for absolute safety in case of power failure
- System on the underside of the machine table magnetically isolated to protect drive and measuring systems
- Pole gap also available in solid brass on request (surcharge applies)
- Tapped hole grid M8 for optional pole shoes
- 12 mm wear layer on the pole plate
- Table fastening size 600 x 300 with 2 clamps on the edge
- Table fastening size 600 x 400 to 1000 x 500 with 4 clamps on the edge
- Table fastening size 1000 x 500 with through holes on request
- Electrical connection up to size 1000 x 500 with heavy-duty power connector, permanent connection for larger sizes
- Fastening with through holes on request
- Threaded holes for round poleshoes as an option (M)

RATED HOLDING FORCE

- When using pole raisers: 3200 N/pole
- For direct placement: 900 kN/m²

RATED VOLTAGE 360 V IMP

APPLICATION


- For chucking thinner plates, e.g. weld seam preparation and for milling of hard parts and higher alloyed materials. Please contact us for more information
- Amplified magnet system with demagnetising cycle, also suitable for hard milling
- Universal for a variety of different part geometries 5-side machining possible when using pole shoes (mobile and fixed) to create free space for tools
- Suitable for medium and large-surface systems
- Round version available on request
- For workpieces:
 Min. thickness = 8 mm

 For flat workpieces: Min. size = 200 x 200 mm

SCOPE OF DELIVERY

- Up to 525 mm width with 2 clamps, with 4 clamps for larger widths
- 3 m connecting cable, protective hose optionally possible
- Includes lifting plates
- Control and control unit not included (see SAV 876.17)
- Clamps

Dimens	sions fo	r versio	on <mark>A</mark> – li	near po	le patte	ern:		
[]]]			mm				г Qty. ျ	ſ
Α	В	с	D	E	F	G	No. of poles	
600	300	80	616	720	100	100	18	
600	400	80	616	720	100	100	24	
800	400	80	816	920	100	100	32	
1000	500	80	1016	1120	100	100	50	
1200	600	80	1200		100	100	72	
1600	600	80	1600		100	100	96	
2000	600	80	2000		100	100	120	
2000	800	80	2000		100	100	160	

Dime	nsions f	or vers	ion B – d	offset po	ole patte	ern:		
r			mm				г Qty. न	
A	В	с	D	E	F	G	No. of poles	
600	350	80	616	720	100	85	22	
600	440	80	616	720	100	85	27	
800	440	80	816	920	100	85	37	
1000	525	80	1016	1120	100	85	57	
1200	610	80	1200		100	85	80	
1600	610	80	1600		100	85	108	
2000	610	80	2000		100	85	136	
2000	800	80	2000		100	85	175	

ORDERING EXAMPLE

 Designation
 SAV no. - A x B - version - number of poles - option - rated voltage

 Electro permanent magnetic chuck
 SAV 243.78 - 2000 x 800 - A - 160 - M - 360 V

— daN —	┌─ kg ─┐	г А
fotal holding orce on pole rounds	Weight	Control max. pul. Current
5760	113.0	30
7680	151.0	30
10240	201.0	30
16000	314.0	60
23040	453.0	60
30720	604.0	60
38400	755.0	60x2
51200	1006.0	60x2

— daN —	r- kg	г А
otal holding orce on pole rounds	Weight	Control max. pul. Current
7040	132.0	30
8640	166.0	30
11840	221.0	30
18240	330.0	60
25600	460.0	60x2
34560	614.0	60x2
43520	767.0	60x2
56000	1006.0	60x3

voltage

1.2.10

PERM

1.2.1

1.2.2

EP

1.2.3

1.2.4

1.2.5

1.2.6

_

1.2.7

Ì

1.2.8

1.2.9

SAV 243.79

ELECTRO PERMANENT MAGNETIC CHUCKS

Universally suitable system with hexagonal pole pitch

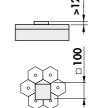
Milling magnet for flexible use with high holding force.

DESIGN

- Optimised high-energy magnet system
- Low height · Electro permanent magnetic system for absolute safety in case of power failure.
- Tapped hole grid M8 for optional pole shoes
- Protection rating IP 65
- 8 mm wear layer of the pole plate

RATED HOLDING FORCE

- On workpiece: 150 N/cm²
- Per pole pair: 900 daN


RATED VOLTAGE

360 V IMP

APPLICATION

For milling, especially for universal machining with high level of material removal

- HSC milling
- Also suitable for larger air gaps
- Min. thickness of the workpiece: 12 mm
- Min. workpiece size: 100 x 100 mm

The magnetic chucking and the free side access allow 5-sided machining with pole shoes SAV 248.70.

SCOPE OF DELIVERY

- Up to 400 mm width with 2 clamps, with 4 clamps for larger widths
- 3 m connecting cable, protective hose optionally possible
- Includes lifting plates Control and control unit not included (see SAV 876.17)
- Clamps

 \bigcirc

Special version for pallets on 5-axis machine

ELECTRO PERMANENT MAGNETIC CHUCKS With square pole pitch

Milling magnet for universal use. Full metal pole surface with high capacity at low cost.

DESIGN

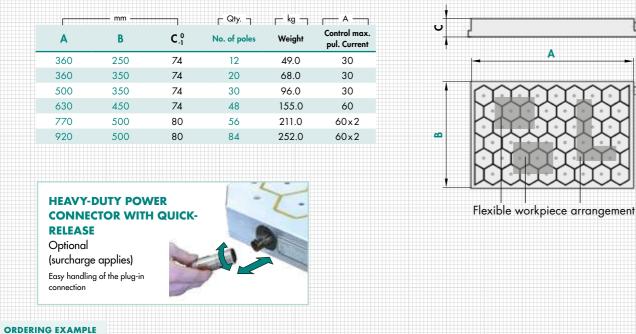
- Pole plate with 50 mm square pole size
- Full metal pole plate without epoxy resin as an option (VME) for optimum sealing. Wear protection even for hot swarf.
- Version with epoxy resin (EPX)
- Wear layer on the pole plate: 1 mm to steel insulation
- 5 mm to functional barrier in the epoxy
- Available with tapped hole grid M8 for using pole shoes SAV 248.70
- Electrical connection with heavy-duty power connector
- Table fastening with through holes or with clamps

RATED HOLDING FORCE

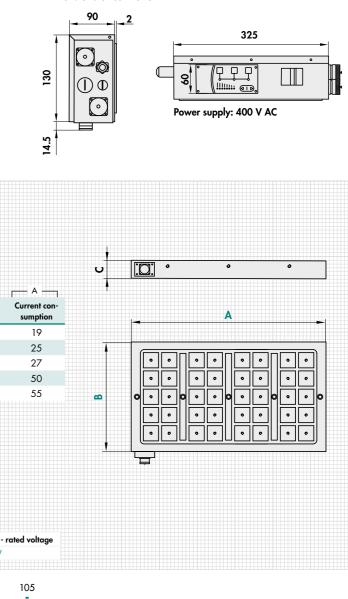
- Epoxy: 3500 N/pole (VME)
- Full metal: 3150 N/pole (EPX)

RATED VOLTAGE 360 V IMP

APPLICATION


For milling, universal applications

- Min. thickness of the workpiece: 13 mm
- Min. workpiece size: 120 x 120 mm

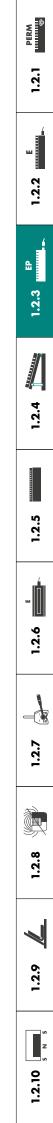


	mm		г Qty. –	r- kg	-
A	В	с	No. of poles	Weight	Cu
340	360	59	20	54	
490	360	59	30	77	
640	360	59	40	106	
790	360	59	50	131	
790	480	59	70	175	

ORDERING EXAMPLE SAV no. - A x B - number of poles - version - rated voltage Designation Electro permanent magnetic chuck SAV 243.80 - 640 x 360 - 50 - EPX - 360 V

SAV no. - A x B - number of poles - rated voltage Designation Electro permanent magnetic chuck SAV 243.79 - 770 x 500 - 56 - 360 V

 \bigcirc



Picture shows full metal version (VME)

SCOPE OF DELIVERY

 Always supplied with cable and polarity reversal control unit Clamps and fastening screws included

Dimensions of control unit

ELECTRO PERMANENT MAGNETIC CHUCK TOWERS

SAV 242.92

Chuck towers, precision-milled

 $\textcircled{O} \blacksquare$

APPLICATIONS

We design and manufacture electro permanent magnetic vertical chuck individually and in any size.

Also as a pallet solution and with top tooling adapted to your workpiece.

 $S^{\}$

Ask us about your application. We examine the possible machining parameters. Also with individual and customised written calculation tools for each case.

PROGRAM FOR EVALUATION OF NUMBER	R OF POI	LE SHOES		
magnetic system	in N	/cm ²	parameters of top tooling	parameters of top tooling dim.
nominal specific force of magnetic chuck (FH/A)	16	5	calculated hoding force (FH/A)	calculated hoding force (FH/A) 104
			contact surface of pole shoe (A)	contact surface of pole shoe (A) 19.2
······	value	force factor	friction factor (µ0)	friction factor (µ0) 0.2
non magnetic alloying contribution	2.5 %	86 %	1.1.2.1.1	
factor heat treatment dec	cision 1/0	force factor	calculated values	
			cutting speed (vc)	
hardened	0	100 %	feed per tooth (fz)	
annealed	0	100 %	cutting angle (phi)	
factor air gap (0-0,7 mm)	in mm	force factor	middle depth of cut (hm)	
between work piece and pole shoe	0.2	87 %	width of cutting (b)	
between work piece and pole silve	0.2	07 /0	spec. cutting force (kc)	spec. cutting force (kc) 2426
factor thickness work piece	in mm	force factor	evaluated results	evaluated results dim.
reduction at thin parts	53	100 %	cutting force (Fc)	cutting force (Fc) 3270
			cutting power (Pc)	cutting power (Pc) 8
application	in N	/cm ²	cutting volume (Q)	cutting volume (Q) 600
calculated specific force (FH/A)	10)4	min. needed no. of pole shoes	min. needed no. of pole shoes
			at safety 2.5	at safety 2.5
dimensions of work piece	in r		min. needed contact surface at	1203
length (L)	17		safety 2.5	safety 2.5
width (W)	28	-	max. possible no. of pole shoes	
heigth (H)	5	3	covering relation of surface	covering relation of surface 52
parameters of machining (face milling)	dim.	unit		
diameter of tool (D)	200	mm		
number of teeth (z)	10	pce		$ \frown \land /$
cutting depth (ap)	5	mm	\sim /-/	\sim /-///
infeed of tool (ae)	160	mm		
rpm (n)	240	1/min	magnets · chuck	magnets · chucks · fixtures
feed (f)	750	mm/min		
spec. base cutting force (kc 1.1)	1500	N/mm ²	since 19	since 1984
exponent for cutting force calculation (z)	0.29	-		
tool angle (Kappa)	45	-		

RATED VOLTAGE For horizontal milling and drilling processes. 360V DC IMP

SCOPE OF DELIVERY

Control unit not included

connector

control unit

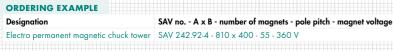
Chuck tower with heavy-duty power

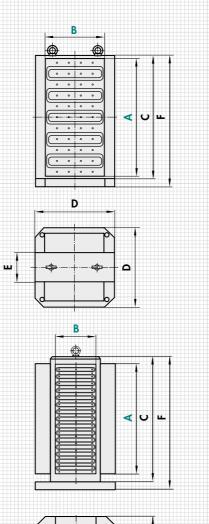
• Suitable for connecting to the SAV 876.17

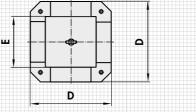
DESIGN

APPLICATION

Chuck tower made of St 52-3, precisionmilled. With electro permanent magnetic chucks SAV 243.77.


Fastening holes upon agreements.


TECHNICAL DATA


- Perpendicularity: 0.03/1000 mm
- Parallelism: 0.04/1000 mm
- Rated holding force: 150 N/cm²
- Magnetic field height: 12 mm
- Wear layer of the pole plate: 5 mm

Technical data for magnets as for SAV 243.77.

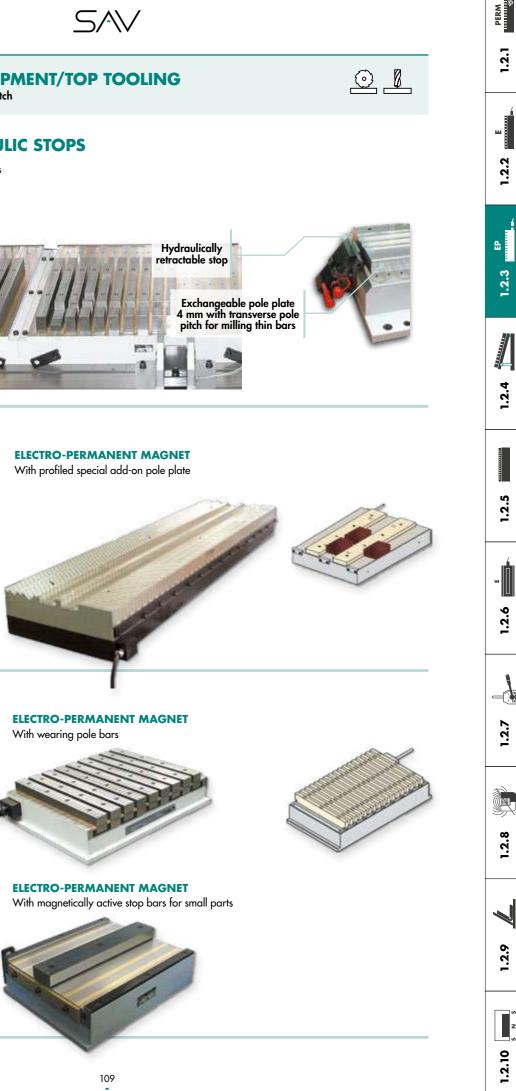
		S TYP					
			mm				kg -
Α	В	с	D	E	F	Pole pitch	Weight
630	400	660	500	150	700	27.5	859.0
590	400	620	400	150	660	55	812.0
580	400	620	400	150	660	85	728.0
Other de	esigns and	d dimens	ions on re	equest.			
)2-4 V 77	VITH	
4 MA	GNET	S TYP	E SAV	243	.77		kg
4 MA	GNET	S TYP	E SAV	243			r− kg − Weight
4 MA	GNET	S TYP	E SAV	243	.77		
4 MA	GNET B	S TYP	E SAV	243 E	.77 F	Pole pitch	Weight
4 MA A 400	GNET B 200	S TYP C 415	PE SAV mm D 320	243 E 200	.77 F 455	Pole pitch 27.5	Weight 287.0
4 MA A 400 520	GNET B 200 200	C 415 620	D 320 400	243 E 200 256	.77 F 455 660	Pole pitch 27.5 27.5	Weight 287.0 437.0
4 MA 4 00 520 630	B 200 200 300	C 415 620 660	D 320 400 500	E 200 256 356	F 455 660 700	Pole pitch 27.5 27.5 27.5	Weight 287.0 437.0 776.0 812.0
A 400 520 630 590	B 200 200 300 300	C 415 620 660 660	D 320 400 500 500	243 E 200 256 356 356	F 455 660 700 700	Pole pitch 27.5 27.5 27.5 27.5 55	287.0 437.0 776.0

RIGHT CHUCK SAV 242.92-2 WITH	
AAGNETS TYPE SAV 243.77	
AAGNEIS ITPESAV 74.5.77	

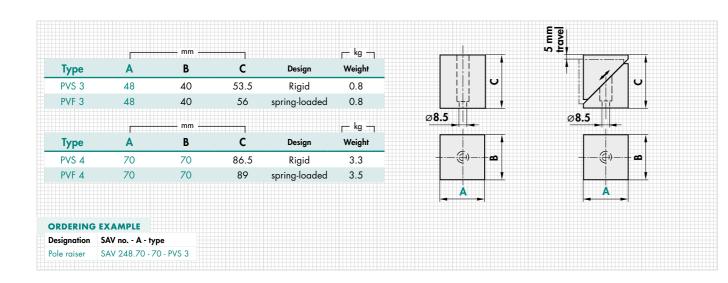
SAV 248.70

APPLICATION

POLE RAISERS – RECTANGULAR


For adaptation to the workpiece geometry

 \odot



DESIGN Bright steel, pole raiser can be ma-As add-on elements for magnets. chined in the desired shape. Can only be used in conjunction with magnetic chuck SAV 243.77-55 and The table shows an excerpt of the pole shoes SAV 243.77-85 or SAV 243.76-65, manufactured by us as a standard. Can be SAV 243.76-85 and SAV 243.80. provided with machining for specific processes and workpieces. Custom versions available.

SAV 248.70

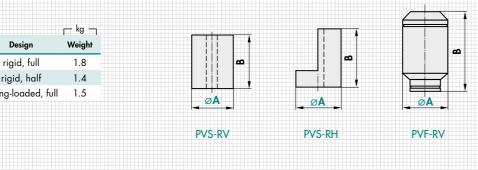
POLE RAISERS – ROUND For adaptation to the workpiece geometry

APPLICATION

As add-on elements for magnets. Can only be used in conjunction with magnetic chuck SAV 243.78 and SAV 243.79.

	· · · · · · · · · · · ·	ım —		r- kg
Туре	Α	В	Design	Weight
PVS-RV	55	75	rigid, full	1.8
PVS-RH	55	75	rigid, half	1.4
PVF-RV	60	70 - 80	spring-loaded, full	1.5
ORDERING Designation	EXAMPLE SAV no A - ty			

Bright steel, pole raiser can be machined in the desired shape. The table shows an excerpt of the pole shoes manufactured by us as a standard. Can be provided with machining for specific processes and workpieces. Custom versions available.


 \odot \blacksquare

Pole shoe,

movable

Pole shoe,

Pole shoe,

ELECTRO PERMANENT MAGNETIC CIRCULAR CHUCKS With radial pole pitch

A strong magnetic field is the special feature of our circular magnets. The magnetic force is generated by the permanent magnets which are magnetised and demagnetised with short current pulses.

DESIGN

- Solid pole plate
- Switch-off using demagnetising cycle
- Electro permanent magnetic system for absolute safety in case of power failure
- High accuracy thanks to pole plates bolted in a narrow grid
- Pole plate with brass, wear-protected
- Pole plate can be replaced when worn
- The radial pole positioning is particularly suitable for using pole raisers. This prerequisite is absolutely required for the runout of the tool or the grinding wheel in case of 3-sides machining. Version with T-slots (T) as per DIN 650-10^{H10} are available for this
- 8 mm wear layer on the pole plate
- Protection rating IP 65
- Available with flange on request (see SAV 248.90 to 248.94, chapter 1.2.1)

RATED HOLDING FORCE

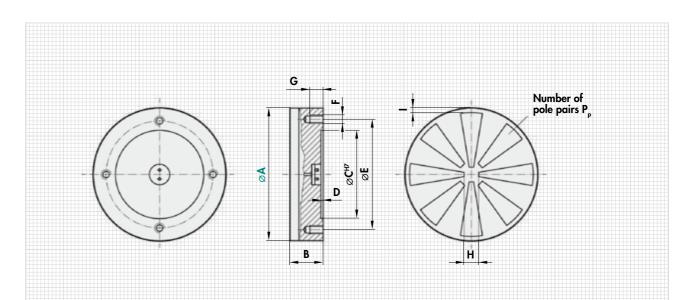
120 N/cm², controllable with control unit

RATED VOLTAGE, RECOMMENDED

210 V IMP up to size A = 400 **360 V IMP** above size A = 400

APPLICATION

Primarily for precise grinding of small to large workpieces on rotary table and cylindrical grinding machines. Also suitable for turning applications.


- Same pole pitch on the circumference, therefore suitable for ring-shaped workpieces
- · For workpieces up to min. width equivalent to 35 % pole pitch on the pitch circle diameter

$$= \frac{\pi}{4} \cdot \frac{d_i + d_a}{P} \quad ; B_{WKPC} > 0.35 \times P$$

Also for thin rings

SCOPE OF DELIVERY

- Larger circular magnets are provided with threads for transport
- Standard version without T-slots and pole raisers
- Standard electrical connection centrally on the rear side using terminals • Alternatively with integrated flat slip ring assembly for larger diameters from 1000 mm
- Available with water-tight heavy-duty power connector on the outer circumference on request
- Control and hand remote unit not in the scope of delivery

SA

PERM (1)

1.2.1

1.2.2

8

1.2.3

1.2.4

1.2.5

1.2.6

1.2.7

Ì

1.2.8

1.2.9

1.2.10

					- mm				– Pair –	kg	V	A
A	B . ^{0*}	с	D	E	F	G	н	I	Pp	Weight	Rated voltage	Control max. pul. Current
100	90	60	3	80	M8 (3x)	12	35	10	3	4.0	210	30
150	90	90	3	120	M10 (3x)	14	35	10	3	9.0	210	30
200	90	110	3	140	M10 (4x)	14	45	10	4	18.0	210	30
250	90	140	3	170	M12 (4x)	16	45	10	4	29.0	210	30
300	90	160	3	190	M12 (4x)	16	60	10	6	42.0	210/360	30
400	90	210	4	250	M12 (6x)	16	70	15	6	76.0	210/360	30
500	90	280	4	320	M12 (6x)	16	100	15	8	120.0	360	30
600	100	350	4	390	M16 (6x)	18	100	15	8	195.0	360	30
700	100	400	4	450	M16 (6x)	18	120	15	8	265.0	360	30
800	100	450	4	500	M16 (6x)	18	150	18	12	365.0	360	30
1000	100	550	4	620	M16 (8x)	18	200	18	12	550.0	360	60
1200	110		Rear s	ide upon	agreement		300	25	18	990.0	360	60×2
1400	110		Rear s	ide upon	agreement		300	25	18	1350.0	360	60x2
1500	120		Rear s	ide upon	agreement		300	25	18	1550.0	360	60×2
1600	120		Rear s	ide upon	agreement		300	25	18	1760.0	360	60x2

Larger diameters, e.g. 5.5 m, available on request. Allocation to the correct control unit is based on the max. power consumption, SAV 876.17.

ORDERING EXAMPLE SAV no. - A - version - rated voltage Designation Electro permanent magnetic circular chuck SAV 244.70 - 1600 - T - 360 V

ELECTRO PERMANENT MAGNETIC CIRCULAR CHUCKS Amplified magnet system with radial pole pitch and extra high holding force

Thanks to the use of special magnet materials, this new type of circular magnets develops an extremely high holding force. Magnetising and demagnetising is achieved with a short direct current pulse. The homogeneous and precise design of the circular magnet allows hard turning and extreme material removal during turning.

DESIGN

- Uniform, strong magnetic field
- Solid pole plate
- Switch-off using demagnetising cycle
- · Electro permanent magnetic system for absolute safety in case of power failure
- High accuracy thanks to pole plates bolted in a narrow grid
- Pole plate with brass, wear-protected
- Pole plate can be replaced when worn
- The radial pole positioning is particularly suitable for using pole raisers. This prerequisite is absolutely required for the runout of the tool or the grinding wheel in case of 3-sides machining. Version with T-slots (T) as per DIN 650-10^{H10} are available for this
- 8 mm wear layer on the pole plate
- Protection rating IP 65
- Available with flange on request (see SAV 248.90 to 248.94, chapter 1.2.1)

RATED HOLDING FORCE:

170 N/cm², controllable with control unit

RATED VOLTAGE, RECOMMENDED: 360 V IMP

APPLICATION

Hard turning and extreme material removal for turning applications on small and large workpieces. Grinding with maximum precision.

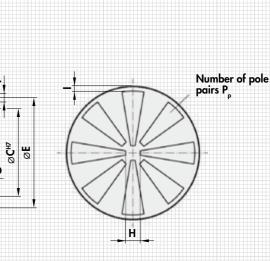
- Same pole pitch on the circumference, therefore suitable for ring-shaped workpieces
- · For workpieces up to min. width equivalent to 35 % pole pitch on the pitch circle diameter

$$P = \frac{\pi}{4} \cdot \frac{d_i + d_a}{P_p} \quad ; B_{WKPC} > 0.35 \times P$$

Also for thin rings

SCOPE OF DELIVERY:

- Larger circular magnets from 25 kg upwards are provided with threads for transport
- Standard version without T-slots and pole raisers
- Standard electrical connection centrally on the rear side using terminals Alternatively with integrated flat slip ring assembly for larger diameters
- from 1000 mm Available with water-tight heavy-duty power connector on the outer circumference on request
- Control and hand remote unit not in the scope of delivery


	-(•	Ø	B	OC [™]			H	pairs P _p
					- mm				— Pair —	ן kg	г v,	A
۲ A	B ₋₁ ^{0*}	с	D	E	F	G	н	I	Pp	Weight	Rated voltage	Control max.
	B ₋₁ ^{0*}	C	D 3	E 140	F M10 (4x)	G	H 45		Р _р 4	Weight 24.0		
A								I	-		Rated voltage	Control max. pul. Current
A 200	100	110	3	140	M10 (4x)	14	45	I 10	4	24.0	Rated voltage 360	Control max. pul. Current 30
A 200 250	100 100	110 140	3 3	140 170	M10 (4x) M12 (4x)	14 16	45 45	I 10 10	4	24.0 39.0	Rated voltage 360 360	Control max. pul. Current 30 30
A 200 250 300	100 100 100	110 140 160	3 3 3	140 170 190	M10 (4x) M12 (4x) M12 (4x)	14 16 16	45 45 60	I 10 10 10	4 4 6	24.0 39.0 54.0	Rated voltage 360 360 360 360	Control max. pul. Current 30 30 30
A 200 250 300 400	100 100 100 100	110 140 160 210	3 3 3 4	140 170 190 250	M10 (4x) M12 (4x) M12 (4x) M12 (6x)	14 16 16 16	45 45 60 70	l 10 10 10 15	4 4 6 6	24.0 39.0 54.0 85.0	Rated voltage 360 360 360 360 360	Control max. pul. Current 30 30 30 30 30
A 200 250 300 400 500	100 100 100 100 110	110 140 160 210 280	3 3 3 4 4	140 170 190 250 320	M10 (4x) M12 (4x) M12 (4x) M12 (6x) M12 (6x)	14 16 16 16 16	45 45 60 70 100	I 10 10 10 15 15	4 4 6 6 8	24.0 39.0 54.0 85.0 150.0	Rated voltage 360 360 360 360 360 360 360 360	Control max. pul. Current 30 30 30 30 30 30
A 200 250 300 400 500 600	100 100 100 100 110 110	110 140 160 210 280 350	3 3 3 4 4 4	140 170 190 250 320 390	M10 (4x) M12 (4x) M12 (4x) M12 (6x) M12 (6x) M12 (6x)	14 16 16 16 16 18	45 45 60 70 100 100	l 10 10 15 15 15	4 4 6 8 8	24.0 39.0 54.0 85.0 150.0 210.0	Rated voltage 360 360 360 360 360 360 360 360 360 360	Control max. pul. Current 30 30 30 30 30 30 30
A 200 250 300 400 500 600 700	100 100 100 100 110 110 110	110 140 160 210 280 350 400	3 3 4 4 4 4 4	140 170 190 250 320 390 450	M10 (4x) M12 (4x) M12 (4x) M12 (6x) M12 (6x) M16 (6x) M16 (6x)	14 16 16 16 16 18 18	45 45 60 70 100 100 120	l 10 10 15 15 15 15 15	4 4 6 8 8 8	24.0 39.0 54.0 85.0 150.0 210.0 280.0	Rated voltage 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360	Control max. pul. Current 30 30 30 30 30 30 30 30 30 30
A 200 250 300 400 500 600 700 800	100 100 100 100 110 110 110 110	110 140 160 210 280 350 400 450	3 3 4 4 4 4 4 4 4 4	140 170 250 320 390 450 500 620	M10 (4x) M12 (4x) M12 (4x) M12 (6x) M12 (6x) M16 (6x) M16 (6x) M16 (6x)	14 16 16 16 18 18 18	45 45 60 70 100 100 120 150	l 10 10 15 15 15 15 15 18	4 4 6 8 8 8 8 12	24.0 39.0 54.0 85.0 150.0 210.0 280.0 380.0	Rated voltage 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360	Control max. pul. Current 30 30 30 30 30 30 30 30 30 30
A 200 250 300 400 500 600 700 800 1000	100 100 100 100 110 110 110 110 125	110 140 160 210 280 350 400 450	3 3 4 4 4 4 4 4 4 8 Rear s	140 170 250 320 390 450 500 620 ide upon	M10 (4x) M12 (4x) M12 (4x) M12 (6x) M12 (6x) M16 (6x) M16 (6x) M16 (6x) M16 (8x)	14 16 16 16 18 18 18	45 45 60 70 100 100 120 150 200	I 10 10 15 15 15 15 15 18 18	4 4 6 8 8 8 8 12 12	24.0 39.0 54.0 85.0 150.0 210.0 280.0 380.0 680.0	Rated voltage 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360	Control max. pul. Current 30 30 30 30 30 30 30 30 30 30 60
A 200 250 300 400 500 600 700 800 1000 1200	100 100 100 100 110 110 110 110 125 125	110 140 160 210 280 350 400 450	3 3 4 4 4 4 4 4 4 8 Rear s Rear s	140 170 250 320 390 450 500 620 ide upon ide upon	M10 (4x) M12 (4x) M12 (4x) M12 (6x) M12 (6x) M16 (6x) M16 (6x) M16 (6x) M16 (8x) M16 (8x) a greement	14 16 16 16 18 18 18	45 45 60 70 100 100 120 150 200 300	I 10 10 15 15 15 15 15 15 18 18 25	4 4 6 8 8 8 8 12 12 12 18	24.0 39.0 54.0 85.0 150.0 210.0 280.0 380.0 680.0 975.0	Rated voltage 360	Control max. pul. Current 30 30 30 30 30 30 30 30 30 60 60×2

Larger diameters, e.g. 5.5 m, available on request.

ORDERING EXAMPLE SAV no. - A - version - rated voltage Designation Electro permanent magnetic circular chuck SAV 244.71 - 1600 - T - 360 V

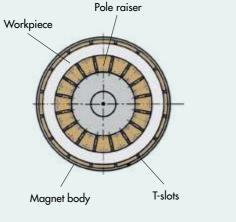
112

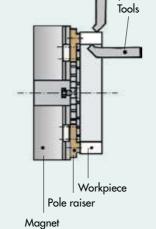
Allocation to the correct control unit is based on the max. power consumption, SAV 876.17.

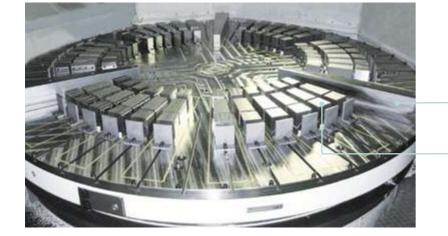
POLE RAISERS

APPLICATION

Hard turning of thin rolling bearing rings on 3 sides with fixed and movable pole raisers.


DESIGN


- Pole raisers in segmented design offer the option of a free-running tool for 3-sided machining of thin rings
- The radial adjustment option covers a larger diameter range
- Can be provided with machining for uneven workpieces or for through holes
- Depending on the rigidity of the workpiece, spring-loaded pole shoes for uneven contact surfaces are also possible
- The pole shoes for circular magnets have to be adapted individually
- We can dimension and manufacture pole raisers for customised solutions on request



Rigid pole raisers with alignment collar

Rigid pole bars for 3-point contact

Movable pole raisers

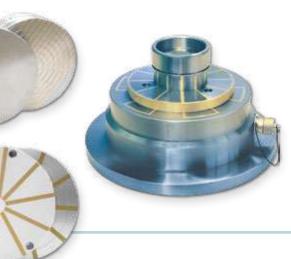
LAMINATED TOP PLATE

- No loss of workpiece contact surfaces
- Good holding forces even for smaller diameters
- Easy to exchange
- Good swarf discharge, easy to clean
- Mounting of pole shoes outside of the machine
- Pole plate change can be automated
- Also with T-slots for pole raisers

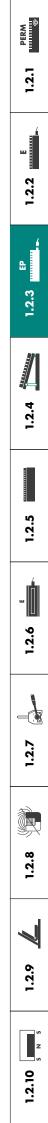
 $S \wedge V$

POLE BEAMS

- As wear protection for the magnet pole plate
- Easy to clean
- With T-slots on request
- Toothing for alignment of heavy rings possible






LAMINATED TOP RINGS

- Up to 650 mm diameter
- No loss of workpiece contact surfaces
- Good holding forces even for smaller diameters
- Easy to exchange
- Cost-efficient

ELECTRO PERMANENT MAGNETIC CIRCULAR CHUCKS With circular pole pitch

The circular magnets with circular pole pitch allow several workpieces to be chucked off-centre. The strong magnetic field is distributed evenly across the pole plate.

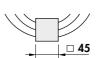
DESIGN

- Pole pitch manufactured "gap-free"
- Uniform, strong magnetic field
- Solid pole plate
- Switch-off using demagnetising cycle
- · Electro permanent magnetic system for absolute safety in case of power failure
- High accuracy thanks to pole plates bolted in a narrow grid
- Pole plate with brass, wear-protected
- Pole plate can be replaced when worn
- 8 mm wear layer on the pole plate
- Protection rating IP 65
- Available with flange on request (see SAV 248.90 to 248.94, chapter 1.2.1)

RATED HOLDING FORCE

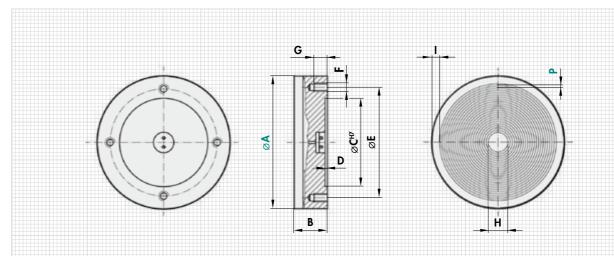
100 N/cm², controllable with control unit

RATED VOLTAGE, RECOMMENDED


210 V IMP up to size A = 500 **360 V IMP** above size A = 500

APPLICATION

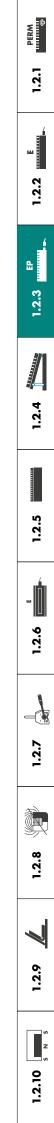
Primarily for precise grinding of small to large workpieces on rotary table and cylindrical grinding machines. The circular pole pitch also allows machining of multiple parts which are not placed centrally.


- Circular pole pitch ensures even distribution of holding force on the circumference. This makes it suitable for thin, flat parts (e.g. saw blades).
- Placement of multiple parts on pitch circle diameter possible
- For workpieces up to min. thickness x: 2 mm with P = 5.5 mm4 mm with P = 9 mm8 mm with P = 18 mm
- For flat workpieces: Min. size = $45 \text{ mm} \times 45 \text{ mm}$

Not suitable for thin rings

SCOPE OF DELIVERY

- Larger circular magnets are provided with threads for transport
- Standard electrical connection centrally on the rear side using terminals Alternatively with integrated flat slip ring assembly for larger diameters
- from 1000 mm Available with water-tight heavy-duty power connector on the outer
- circumference on request
- Control and hand remote unit not in the scope of delivery


 S^{A}

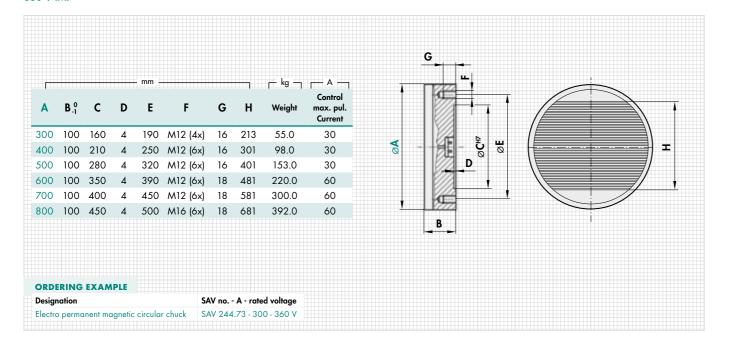
Α	B ₋₁ ⁰	с	D	E	F	G	н	I	Р	Weight	Rated voltage	Control max. pul. Current
300	105	160	3	190	M12 (4x)	16	76	16	5,5	52.0	210	30
400	105	210	4	250	M12 (6x)	16	90	21	9	89.0	210	30
500	105	280	4	320	M12 (6x)	16	96	21	9	141.0	210	30
600	105	350	4	390	M12 (6x)	18	80	21	9	204.0	360	30
700	105	400	4	450	M12 (6x)	18	96	21	9	278.0	360	30
800	105	450	4	500	M16 (6x)	18	96	22	9	383.0	360	30
1000	105	550	4	620	M16 (8x)	18	96	22	9	578.0	360	60
400	105	210	4	250	M12 (6x)	16	66	21	18	89.0	210	30
500	105	280	4	320	M12 (6x)	16	92	21	18	141.0	210	30
600	105	350	4	390	M12 (6x)	18	70	21	18	204.0	360	30
700	105	400	4	450	M12 (6x)	18	92	21	18	278.0	360	30
800	105	450	4	500	M16 (6x)	18	92	22	18	383.0	360	30
1000	105	550	4	620	M16 (8x)	18	92	22	18	578.0	360	60
1200	110	Rec	ar side	upon agi	reement	22	80	23	9	990.0	360	60×2
1400	110	Rec	ar side	upon agi	reement	22	166	26	9	1350.0	360	60×2
1500	120	Rec	ar side	upon agi	reement	22	166	26	9	1550.0	360	60×2
1600	120	Rec	ar side	upon agi	reement	22	166	26	9	1765.0	360	60×2
1200	110	Rec	ar side	upon agi	reement	22	70	23	18	990.0	360	60×2
1400	110	Rec	ar side	upon agi	reement	22	166	26	18	1350.0	360	60×2
1500	120	Rec	ar side	upon agi	reement	22	166	26	18	1550.0	360	60×2
1600	120	Rec	ar side	upon agi	reement	22	166	26	18	1765.0	360	60x2

Larger diameters, e.g. 5.5 m, available on request. Allocation to the correct control unit is based on the max. power consumption, SAV 876.17.

Designation Electro permanent magnetic circular chuck

ELECTRO PERMANENT MAGNETIC CIRCULAR CHUCKS With parallel pole pitch 4 mm

Circular magnet with fine pole pitch for thin parts. Centre also magnetically active.


DESIGN

- Pole plate with particularly narrow, continuous pole pitch, 3 mm steel and 1 mm brass
- Low height
- Pole divisions bonded and reinforced with tie rods
- High accuracy thanks to pole plates bolted in a narrow grid
- Low field height of 4 mm
- Switch-off using demagnetising cycle
- Housing annealed without stress
- Fastening hole pattern with threads at the rear or through holes upon agreement
- · Electro permanent magnetic system for absolute safety in case of power failure
- 8 mm wear layer on the pole plate
- Protection rating IP 65

RATED HOLDING FORCE

• 100 N/cm², controllable with control unit using holding force coding switch

RATED VOLTAGE, RECOMMENDED 360 V IMP

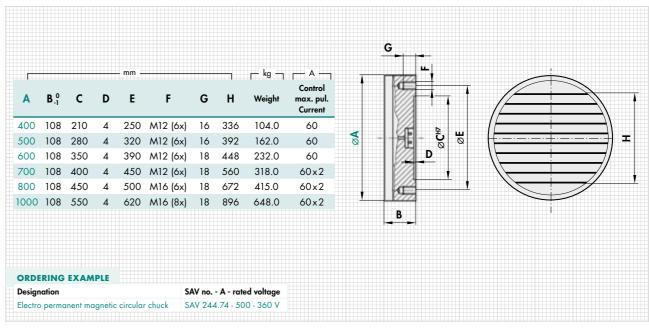
APPLICATION

Grinding thin plates, wide rings with low thickness and min. widths of 40 mm.


- Suitable for placement of several small parts
- For workpieces up to: min. thickness = 2 mm

 For flat workpieces: Min. size = 40×40 mm

SCOPE OF DELIVERY


- Larger circular magnets are provided with threads for transport
- Standard electrical connection centrally on the rear side using terminals
- On request with water-tight heavy-duty power connector
- Control and hand remote unit not in the scope of delivery

 DESIGN Even, extremely strong magnetic field through dual high-energy system Solid pole plate Pole gap with full brass Electro permanent magnetic system for absolute safety in case of power failure 	AF Tur
 Also for thinner, disc-shaped workpieces Centre fully magnetically active 8 mm wear layer on the pole plate Protection rating IP 65 Available with flange on request (see SAV 248.90 to 248.94, chapter 1.2.1). 	-
RATED HOLDING FORCE	sc •

• 150 N/cm², controllable with control unit

RATED VOLTAGE, RECOMMENDED 360 V IMP

SAV 244.74

With parallel pole pitch 28 mm, extremely high holding force

Extremely high holding forces through high-energy systems with low field heights. Magnetising and deactivation are achieved with short current pulses.

 $\widehat{}$

PPLICATION

urning of thinner plates with high level of material removal

Also suitable for flat workpieces thanks to parallel pole pitch; note magnetically active length H

For workpieces with: min. thickness = 8 mm

For flat workpieces: Min. size = 50×50 mm

COPE OF DELIVERY

Larger circular magnets are provided with threads for transport Standard electrical connection centrally on the rear side using terminals

 Available with water-tight connector on the outer circumference on request

Control and hand remote unit not in the scope of delivery

1.2.1 PERM
1.2.2 F
1.2.3 EP
1.2.4
1.2.5
1.2.6
1.2.7
1.2.8
1.2.9 🔏
1.2.10 •

COMBINED CIRCULAR CHUCKS Radial pole pitch and integrated jaw chuck

 \bigcirc

Combination of magnetic and mechanical workholding

The innovative combination of magnetic workholding with a centring chuck – a complete system solution from a single source

ADVANTAGES

- Reproducible centring
- Reliable process
- Option for combining first and second chucking
- Compact design (height from 170 mm)

DESIGN OF MAGNET SYSTEM

- Combination/hybrid magnet chuck type SAV 224.76 with electro permanent magnetic principle, magnet system with amplified design, holding forces on inducible area up to 170 N/cm²
- Full metal pole plate with brass insulation and T-slots as per DIN 650-10^{H10} for mounting fixed and movable pole raisers
- 8 mm wear layer on the pole plate, can be replaced after many years of use and wear
- On request with heavy-duty power connector integrated into the circumference and as a quick-release coupling

RATED HOLDING FORCE

170 N/cm², controllable with control unit

RATED VOLTAGE, RECOMMENDED 360 V IMP

DESIGN EXAMPLE FOR CENTRING CHUCK

- Power chuck SAV 260.20
- Centring accuracy of the chuck: 0.02 mm, centring range from: 450 - 1200 mm,
- magnetic chucking range from: 500 1100 mm
 Chuck equipped with brushed long-size base jaws, a chucking range of
- 500 1200 mm can be centred without gaps
 Holding force of the chuck: 180 kN at 210 Nm
- Travel per jaw: 9.6 mm
- Actuation of the jaw unlocking on the centring chuck with a control rod
- Spindle with precision bearing and sealing

SPECIAL FEATURE

- Resistant to emulsions as per IP 65
- Can be controlled with machine spindle using rotary transmitter
 Control with demagnetising cycle and eight holding force levels for pre-selection
- System with potential-free switching to the enable signals, complete integration into the machine controller possible; plug-in version with parking station for connector check and enable


	Diameter	Pole pairs	No. of jaws	Height	Active diameter	Weight	Control max. pul. Current
	500	6	3	170	250 - 464	260.0	30
	600	9	3	170	300 - 564	378.0	30
	800	9	3	170	300 - 764	670.0	30
	1000	12	6	180	450 - 950	1100.0	60
	1200	12	6	180	450 - 1150	1600.0	60x2
	1400	12	6	180	450 - 1350	2180.0	60x2
	1600	12	6	180	500 - 1430	3160.0	60x2
	1800	18	6	180	600 - 1750	4000.0	60x2
	Other design	s upon reque	st, force actuati	on possible	upon clarification	of spindle ir	tegration.
ORDERING EXAMPLE							
Designation	SAV no diamet	er x pole pairs -	no. of jaws - magne	et voltage			
Combined circular chuck	SAV 244.76 - 18	00 x 18 - 6 - 360) V				

APPLICATIONS

 $S^{\}$

We manufacture large magnets for rolling bearing machining with grinding and hard turning. For example 4.3 m diameter consisting of 2 segments. Flat slip ring assembly integrated into the centre.

PERM

1.2.1

ELECTRONIC POLARITY-REVERSING CONTROL UNIT SAV 876.17

With integrated microcontroller and holding force control

APPLICATION

For electro permanent magnetic systems with 210 V or 360 V magnet voltage 30 A IMP max. magnetic voltage. Also suitable for retrofitting. Control with hand remote unit SAV 876.02-SE3, control elements integrated or machine-side PLC signals.

FUNCTION

- As pulse control for magnetising electro permanent magnetic chucks
- Control of the demagnetising cycle
- Optimised for all SAV electro permanent magnetic chucks
- Monitoring of the mains voltage, the own power components and all cables, including the magnet coil. Some internal components with redundant design
- Machine enable with dual-channel safety contact
- Chucking and releasing using redundant input signals with feedback after completed magnetising and demagnetising
- Holding force regulations using inverse BCD coding, 8 or 16 levels

PERFORMANCE CHARACTERISTICS

- Small and compact
- Easy to integrate into any machine
- User-friendly with LCD plain text display in English/German
- Easy menu selection using film keypad
- Chokes and filters are integrated
- Signal inputs and outputs indicated by LEDs
- Connectors for signal inputs and outputs
- Magnet connection with potential-free switching
- Reliable and safe operation
- Version in box with main switch, terminal strip and circuit breaker

ADVANTAGES

- Short-circuit resistant
- Fully electronic control and power board
- Additional potential-free switching relay for magnetic connection
- Extended diagnostics
- Earth connection test
- Very compact design
- Pre-programmed settings
- Individual programming options
- Short demagnetising period
- High demagnetising quality for single magnet systems
- Automatic supply frequency detection
- Function design and user guidance
- Developed based on TÜV criteria regarding electrical and functional safety as well as operational stability and EMC

CONFORMITY AS PER DIRECTIVES

SAV

DE CONTROLUNIT

- 2014/35/EU Low Voltage Directive
- 2014/30/EU Electromagnetic Compatibility Directive
- 2011/65/EU RoHS

OPERATIONAL SAFETY

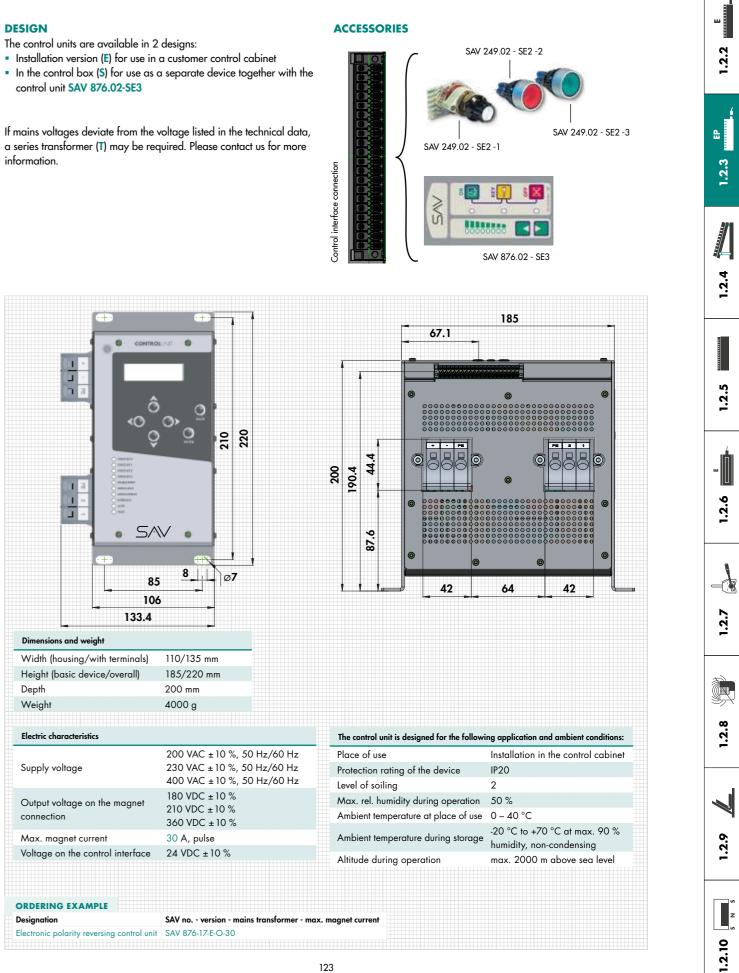
- Category 2
- Performance level c
- MTBF is 30.45 years

OPTIONAL

The control unit in the control box can be equipped with a heavy-duty power connector. Socket with cap on the magnet, 5 m cable with connector on the control unit. Cables and connectors are 8-pin, suitable for control unit sizes of max. 60 A x 2. Ordering designation: SAV 876.12-SS9

OPTIONAL

If control unit and magnet are used for palletising, an optional parking station prevents movement of the pallet while the connector is inserted. Ordering designation: SAV 876.12-PS9


DESIGN

Depth

The control units are available in 2 designs:

- In the control box (S) for use as a separate device together with the control unit SAV 876.02-SE3

If mains voltages deviate from the voltage listed in the technical data, a series transformer (T) may be required. Please contact us for more information.

SAV 876.02 HAND REMOTE UNITS

For actuating polarity reversal control units SAV 876.17

- SE3

DESIGN

To comply with accident prevention regulations on machine tools, it must be ensured that the machine feed is only enabled when the chucking magnet is activated (using auxiliary contacts) and that the activation is monitored with an indicator light. The control units comply with these regulations. The indicator light is integrated into the keys of the control unit. The auxiliary contacts for the machine feed are located in the polarity reversal control unit.

APPLICATION

For switching workholding magnets in conjunction with the electronic polarity reversal control units SAV 876.10 or SAV 876.17. The yellow and green keys are used for switching on. The yellow and red keys are used to initiate the polarity reversal process. Any malfunctions detected by the polarity reversal control units are also indicated by a coded flashing signal in the red key. The holding force can be selected in 8 levels.

HAND REMOTE UNIT TYPE SE3

For holding force control at 8 levels for inverse BCD coding, with integrated indicator lights and a 2 m numbered cable. Additional numbered cable available (surcharge applies).

TECHNICAL DATA

- Housing size (LxWxH): 160 × 80 × 60 mm
- Operating voltage: 24 V
- Protection rating: IP 63
- Protection class: III

SAV 876.02 - SE2

CONTROL ELEMENTS FOR INSTALLATION

CONTROL ELEMENTS TYPE SE2-1 TO SE2-3, **INSTALLATION TYPE**

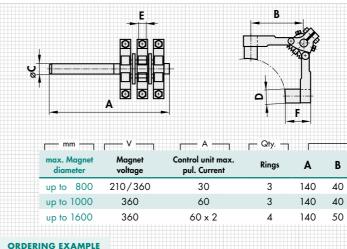
Consisting of:

2 illuminated push-buttons and coding switch with 8 levels for holding force adjustment with inverse BCD coding Complete set available as type SE2-S.

Coding switch SE2-1

ø15 8 ORDERING EXAMPLE 40 Designation SAV no. - type Hand remote unit SAV 876.02 - SE3 SE2-1 SE2-2 SE2-3

SAV 248.84


CARBON BRUSH HOLDERS

For power supply to electro permanent magnetic circular chucks

APPLICATION

bolts.

DESIGN The carbon brush holders shown are used for Bronze grades, spring-loaded. transferring current to the slip ring assemblies. Attached at distance G from the slip ring They are supplied in 3 sizes including fastening assembly.

SAV no. - max. round magnet diameter Designation Carbon brush holder SAV 248.84 - 1600

SAV 248.85

SLIP RING BODIES

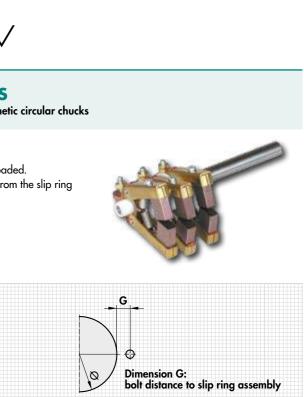
For power supply to electro permanent magnetic circular chucks

APPLICATION

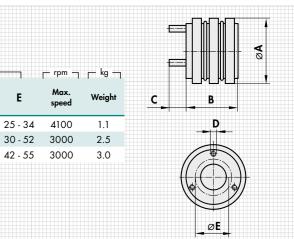
Slip ring bodies are used in conjunction with carbon brush holders for power supply to rotating electro permanent magnetic circular chucks. The slip ring body is used for separate installation on the hollow machine spindle.

During mounting, it must be ensured that insulation parts are not wetted with liquids. A contact protection for the live parts on the machine must be provided. Electrical connection with cable lugs against support nut.

FASTENING


- Shrinking at 130 °C
- Pressing with 0.5 mm interference
- Adhesive bonding

DESIGN


Delivery with only one small hole. The locating hole (or thread) must be subsequently machined according to the machine spindle, taking into account maximum dimension E.

mm		—) (— A —				— mm	
nax. Magı diameter			Rings	Α	В	с	D
p to 80	0 210/3	60 30	3	70	61.5	20	M5
p to 100	360	60	3	100	65.5	25	M8
p to 160	360	60 x 2	4	100	79	25	M8

ORDERING EXAMPLE Designation SAV no. - max. round magnet diamete Slip ring body SAV 248.85 - 1600

	— mm -			1	┌─ kg —
с	D	E	F	G	Weight
M8	12.5	6.3	20	27	0.17
M8	12.5	6.3	20	25	0.17
M8	20	8	25	33.5	0.23

SAV 248.86

ROTATING CONNECTOR

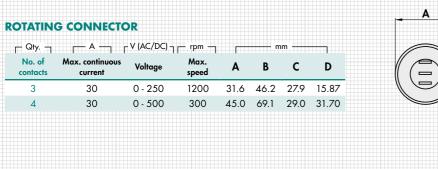
For power supply to electro permanent magnetic circular chucks

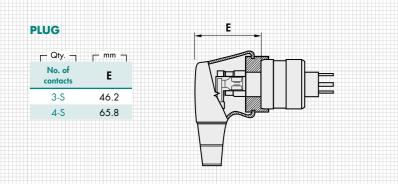
APPLICATION

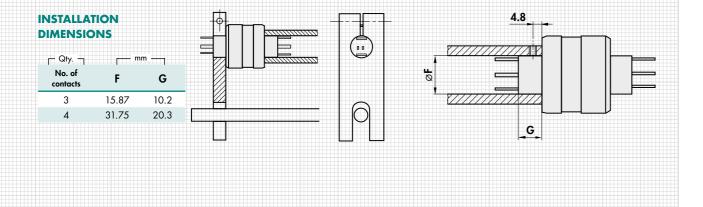
- For integration at the spindle end
- Alternatively in the magnet centre for special versions

DESIGN

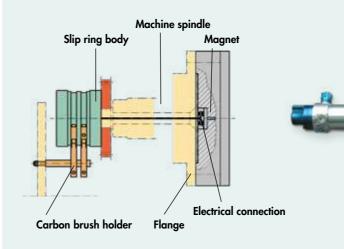
- Compact design
- Encapsulated version
- Maintenance-free


TECHNICAL DATA

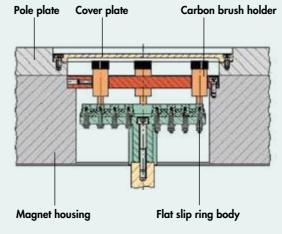

- Protection rating IP 51
- Low contact resistance


FASTENING

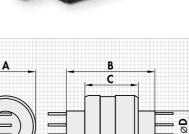
• With radial clamping on diameter D


ORDERING EXAMPLE SAV no. - no. of contacts Designation Rotating connector SAV 248.86 - 4 ORDERING EXAMPLE Designation SAV no. - no. of contacts Plug

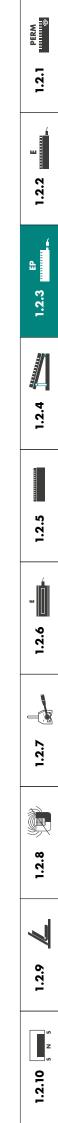
SAV 248.86 - 4-S



ELECTRO PERMANENT MAGNETIC CIRCULAR CHUCKS Electrical power supply


CURRENT TRANSMISSION WITH SEPARATE SLIP RING BODY AT THE SPINDLE END

CURRENT TRANSMISSION FOR LARGE CIRCULAR MAGNETS, IN SEGMENTED DESIGN WITH **INTEGRATED FLAT SLIP RING BODY**



CHAPTER PRECISION SINE TABLES WITH MAGNET

1.2. STANDARD MAGNET SYSTEMS PRECISION SINE TABLES WITH MAGNET 1.2.4

	SAV ART. NO.	COMMENTS	POLE PITCH	MACHINING PROCESSES*	PAGE
	245.01	Swivelling around longitudinal axis	P = 1.9 mm	♥≞∎	131
	245.02	Swivelling around longitudinal/ transverse axis	P = 1.9 mm	़⊈∎	132
	245.03	Swivelling around transverse axis	P = 1.9 mm	़⊈∎	133
	245.04	Swivelling around longitudinal axis, low design	P = 1.9 mm	़⊈∎	134
	245.05	Swivelling around transverse axis, low design	P = 1.9 mm	़⊈∎	135
y l	245.06	Swivelling around centre axis to both sides	P = 1.9 mm	़⊈∎	136
	245.07	Swivelling around longitudinal axis, with amplified holding force	P = 15 mm	040	137
	245.08	Swivelling around longitudinal/ transverse axis, with amplified holding force	P = 15 mm	040	138
S.	245.09	Swivelling around longitudinal axis, permanently installed on machine table	P = 4; 18 mm	⊘₫	139
-	245.10	Swivelling around longitudinal axis, permanently installed on machine table	P = 13; 18; 25 mm	्नि	140
	245.40	Swivelling around longitudinal axis, with controllable permanent magnetic chuck block SAV 242.11	P = 4 mm	ぐ┇╝┨	141
No.	245.41	Swivelling around longitudinal axis, with controllable permanent magnetic chuck block SAV 242.11	P = 4 mm	ぐ┇╝╹	141
	245.44	Swivelling around the centre axis with degree scale	P = 1.9 mm		142

* Explanation of the icons on page 4

power. people. passion.

 $S \wedge V$

CUSTOMER BENEFIT

PRECISION SINE TABLES FOR GRINDING/EDM

- Magnet with high "even" holding force performance
- Large magnetically active area
- Plane parallelism ±0.005 / 100 mm

2

Π

 Additional fastening brace for attachment when positioning the gauge blocks

3

- Fully tightness-tested
- Very flat design

4

- Small angles can also be set with 3 mm gauge block at 0°
- From 300 mm length with 2 gauge block supports for maximum precision

(5)

- Base plate milled from solid material
- Base plate hardened for rigidity and long-term accuracy

6

- Angle accuracy ±5 arc sec
- Axes made of stainless steel
- Precision-ground prism bearing for long-term accuracy
- Low-distortion clamping with the upper bearing shell

7

8

Long stop bar, precision-ground

Stainless steel measuring rollers

SAV 245.01

PRECISION SINE TABLES

Swivelling around the longitudinal axis

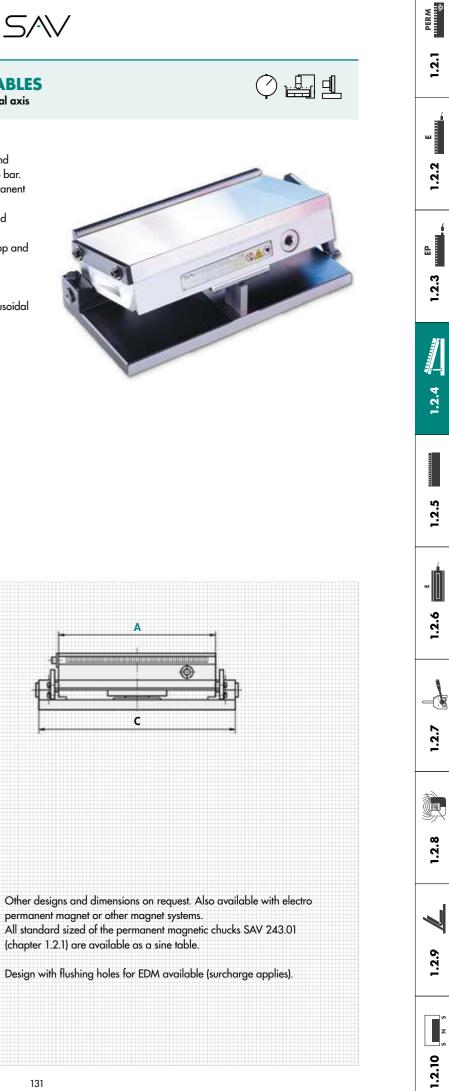
DESIGN

With sine table base unit made of steel. Hardened, burnished and precision-ground. Base plate alignment edge parallel to the stop bar. Maximum precision with flat design. Standard design with permanent magnetic chuck.

The sine tables are delivered in a wooden storage box, up to and including size 400 x 200 mm.

With sine table with degrees/minutes in mm, precision length stop and transverse stop bar.

APPLICATION


The angles are determined using the gauge blocks using the sinusoidal principle.

Clamping is achieved with the upper bearing shell halves.

TECHNICAL DATA

- Angle accuracy: ±5 arc sec
- Plane parallelism: ±0.005/100 mm
- Gauge block at 0°: 3 mm
- Swivelling range: 0° to 45°
- Rated holding force: 90 N/cm²
- Pole pitch: 1.9 mm
- Magnetic field height: 6 mm
- Wear layer of the pole plate: 8 mm

D r kg m

150 150 190 165 85 135 12.0 175 100 215 115 80 85 10.0 250 100 290 115 80 85 16.0 255 130 295 145 80 115 19.0 250 150 290 165 83 135 20.5 300 150 340 165 86 135 26.5 300 200 340 215 86 185 35.0 350 150 390 165 85 135 26.5 300 200 340 215 86 185 35.0 400 200 440 215 85 185 52.0 500 250 540 265 96 235 84.0 600 300 660 317 117 275 121.0	Α	В	с	D	E. ⁰	F	Weight
250 100 290 115 80 85 16.0 255 130 295 145 80 115 19.0 250 150 290 165 83 135 20.5 300 150 340 165 86 135 26.5 300 200 340 215 86 185 35.0 350 150 390 165 85 135 35.0 400 200 440 215 85 185 52.0 500 250 540 265 96 235 84.0	150	150	190	165	85	135	12.0
255 130 295 145 80 115 19.0 250 150 290 165 83 135 20.5 300 150 340 165 86 135 26.5 300 200 340 215 86 185 35.0 350 150 390 165 85 135 35.0 400 200 440 215 85 185 52.0 500 250 540 265 96 235 84.0	175	100	215	115	80	85	10.0
250 150 290 165 83 135 20.5 300 150 340 165 86 135 26.5 300 200 340 215 86 185 35.0 350 150 390 165 85 135 35.0 400 200 440 215 85 185 52.0 500 250 540 265 96 235 84.0	250	100	290	115	80	85	16.0
300 150 340 165 86 135 26.5 300 200 340 215 86 185 35.0 350 150 390 165 85 135 35.0 400 200 440 215 85 185 52.0 500 250 540 265 96 235 84.0	255	130	295	145	80	115	19.0
300 200 340 215 86 185 35.0 350 150 390 165 85 135 35.0 400 200 440 215 85 185 52.0 500 250 540 265 96 235 84.0	250	150	290	165	83	135	20.5
350 150 390 165 85 135 35.0 400 200 440 215 85 185 52.0 500 250 540 265 96 235 84.0	300	150	340	165	86	135	26.5
400 200 440 215 85 185 52.0 500 250 540 265 96 235 84.0	300	200	340	215	86	185	35.0
500 250 540 265 96 235 84.0	350	150	390	165	85	135	35.0
	400	200	440	215	85	185	52.0
600 300 660 317 117 275 121.0	500	250	540	265	96	235	84.0
	600	300	660	317	117	275	121.0

ORDERING EXAMPLE Designation SAV no. - A x B

Precision sine table SAV 245.01 - 300 x 150

PRECISION SINE TABLES

Swivelling around longitudinal and transverse axis

DESIGN

With sine table base units made of steel. Hardened, burnished and precision-ground. Maximum precision with flat design. Standard design with permanent magnetic chuck.

Delivered in a wooden storage box.

With 2 sine tables with degrees/minutes in mm, precision length stop and transverse stop bar.

APPLICATION

The angles are determined using the gauge blocks using the sinusoidal principle.

Clamping is achieved with a fastening brace at the side and the upper bearing shells.

TECHNICAL DATA

- Angle accuracy: ±5 arc sec
- Plane parallelism: ±0.005/100 mm
- Gauge block at 0°: 3 mm
- Swivelling range, long axis: 0° to 45°
- Swivelling range, short axis: 0° to 30°
- Rated holding force: 90 N/cm²
- Pole pitch: 1.9 mm
- Magnetic field height: 6 mm
- Wear layer of the pole plate: 8 mm

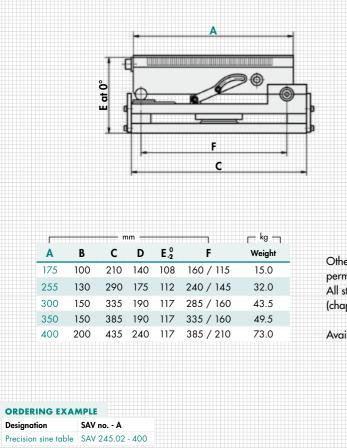
 $\bigcirc \blacksquare \blacksquare$

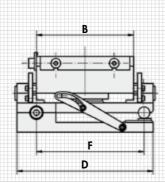
SAV 245.03

PRECISION SINE TABLES

Swivelling around the transverse axis

DESIGN

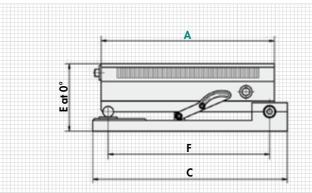

With sine table base unit made of steel. Hardened, burnished and precision-ground. Maximum precision with flat design. Standard design with permanent magnetic chuck. Delivered in a wooden storage box. With sine table with degrees/minutes in mm, precision length stop and transverse stop bar.


APPLICATION

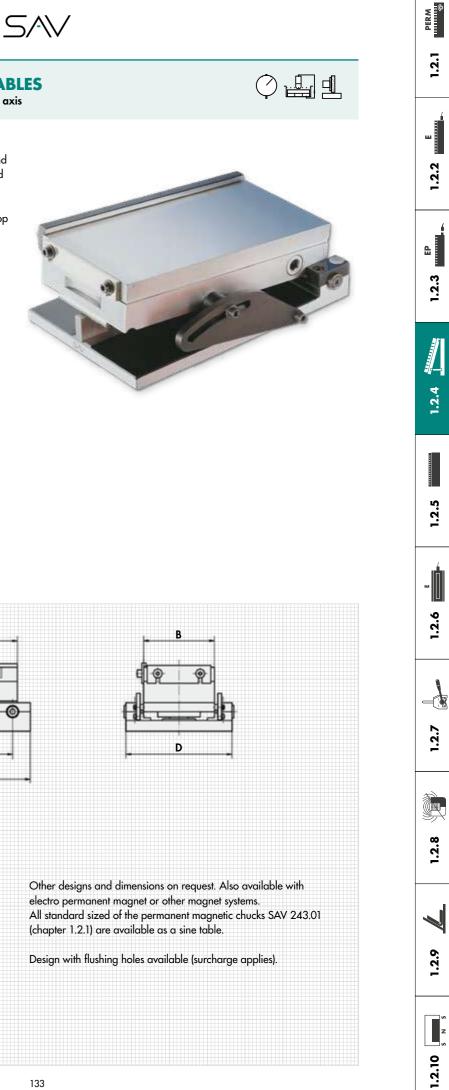
The angles are determined using the gauge blocks using the sinusoidal principle. Clamping is achieved with the upper bearing shell halves.

TECHNICAL DATA

- Angle accuracy: ±5 arc sec
- Plane parallelism: ±0.005/100 mm
- Gauge block at 0°: 3 mm
- Swivelling range: 0° to 30°
- Rated holding force: 90 N/cm²
- Pole pitch: 1.9 mm
- Magnetic field height: 6 mm
- Wear layer of the pole plate: < 8 mm



Other designs and dimensions on request. Also available with electro permanent magnet or other magnet systems.


All standard sized of the permanent magnetic chucks SAV 243.01 (chapter 1.2.1) are available as a sine table.

Available with flushing hole for EDM on request (surcharge applies).

	Weight	F	E .0	D	С	В	Α
Other de	8.5	125	81	110	160	70	140
electro p	10.0	160	81	140	190	100	175
All stand	22.0	240	81	170	270	130	255
(chapter	28.0	285	86	190	315	150	300
	55.5	385	86	240	415	200	400
Design w	48.0	435	86	190	465	150	450

ORDERING EXAMPLE SAV no. - A Designation Precision sine table SAV 245.03 - 450

PRECISION SINE TABLES

Swivelling around longitudinal axis, low design

DESIGN

With sine table base unit made of steel. Hardened, burnished and precision-ground. Maximum precision with extremely flat design. Standard design with permanent magnetic chuck, switching on/off from above. Delivered in a wooden storage box.

With sine table with degrees/minutes in mm, precision length stop and transverse stop bar.

APPLICATION

The angles are determined using the gauge blocks using the sinusoidal principle. Clamping is achieved with the upper bearing shell halves.

- **TECHNICAL DATA**
- Angle accuracy: ±5 arc sec Plane parallelism: ±0.005/100 mm
- Gauge block at 0°: 3 mm
- Swivelling range: 0° to 45°
- Rated holding force: 80 N/cm²
- Pole pitch: 1.9 mm
- Magnetic field height: 6 mm
- Wear layer of the pole plate: 6 mm

 \bigcirc

$S \wedge V$

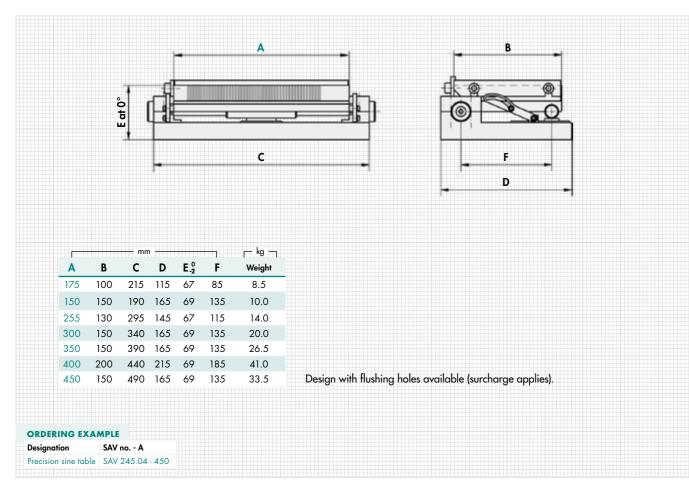
SAV 245.05

PRECISION SINE TABLES

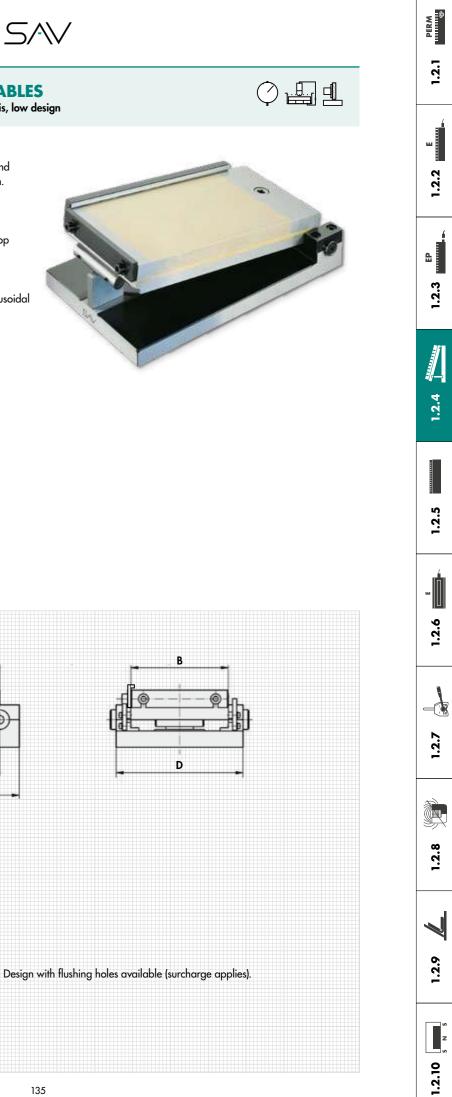
Swivelling around transverse axis, low design

DESIGN

With sine table base unit made of steel. Hardened, burnished and precision-ground. Maximum precision with extremely flat design. Standard design with permanent magnetic chuck. On/off control from above. Sine tables are delivered in a wooden storage box. With sine table with degrees/minutes in mm, precision length stop and transverse stop bar.


APPLICATION

The angles are determined using the gauge blocks using the sinusoidal principle.


Clamping is achieved with the upper bearing shell halves.

TECHNICAL DATA

- Angle accuracy: ±5 arc sec
- Plane parallelism: ±0.005/100 mm
- Gauge block at 0°: 3 mm
- Swivelling range: 0° to 30°
- Rated holding force: 80 N/cm²
- Pole pitch: 1.9 mm
- Wear layer of the pole plate: 6 mm

ò ŧ С r kg m С D E .0 F Weight Α В 175 100 190 140 67 160 8.5 255 130 270 170 66 240 14.0 300 150 315 190 69 285 20.5 350 150 365 190 69 335 27.5 400 200 415 240 68 385 42.0 450 150 465 190 69 435 35.0 ORDERING EXAMPLE Designation SAV no. - A Precision sine table SAV 245.05 - 450

PRECISION SINE TABLES

Swivelling around centre axis to both sides

For grinding and measuring precision workpieces in each angle position without rechucking the parts.

DESIGN

With sine base unit and all components and guide systems made of tool steel. Hardened, burnished and precision-ground. Standard version with permanent magnetic chuck SAV 243.01.

Maximum precision and inherent stability in each rotation position.

Delivered in a wooden storage box, up to and including size 350 x 150 mm.

With sine table with degrees/minutes in mm, precision length stop and transverse stop bar.

APPLICATION

The angles are determined using the gauge blocks using the sine principle up to 90°.

TECHNICAL DATA

- Angle accuracy: ±5 arc sec
- Plane parallelism: ±0.005/100 mm
- Swivelling range: -90° to +90°
- Rated holding force: 90 N/cm²
- Pole pitch: 1.9 mm
- Magnetic field height: 6 mm
- Wear layer of the pole plate: 8 mm

 $\bigcirc \blacksquare \blacksquare$

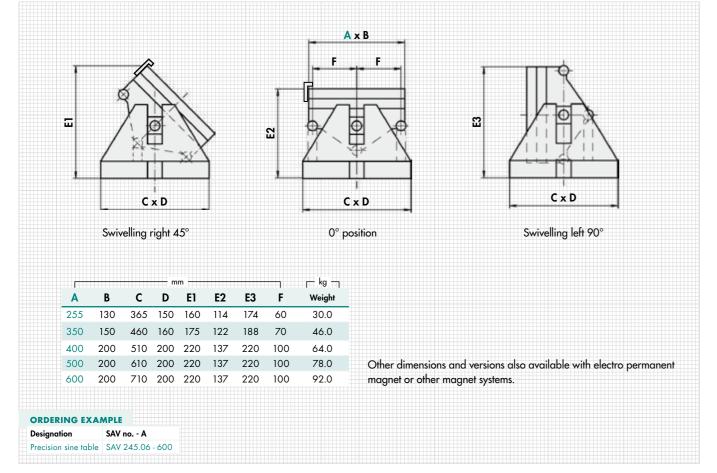
SAV 245.07

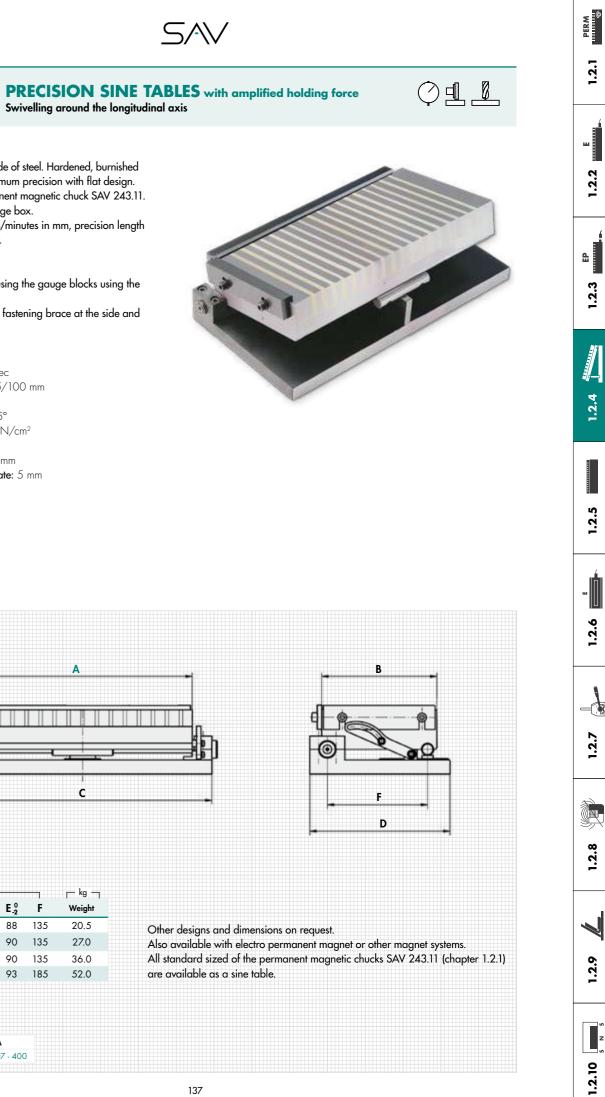
Swivelling around the longitudinal axis

DESIGN

With sine table base unit made of steel. Hardened, burnished and precision-ground. Maximum precision with flat design. Standard design with permanent magnetic chuck SAV 243.11. Delivered in a wooden storage box. With sine table with degrees/minutes in mm, precision length

stop and transverse stop bar.


APPLICATION


The angles are determined using the gauge blocks using the sinusoidal principle. Clamping is achieved with a fastening brace at the side and the upper bearing shells.

TECHNICAL DATA

- Angle accuracy: ±5 arc sec
- Plane parallelism: ±0.005/100 mm
- Gauge block at 0°: 3 mm
- Swivelling range: 0° to 45°
- Rated holding force: 150 N/cm²
- Pole pitch: 15 mm
- Magnetic field height: 12 mm
- Wear layer of the pole plate: 5 mm

E at 0° C r kg -С E.0 D Weight 250 290 88 135 20.5 1.50 165 300 150 340 90 135 27.0 165 390 165 90 135 350 150 36.0 are available as a sine table. 400 200 440 215 93 185 52.0 ORDERING EXAMPLE Designation SAV no. - A Precision sine table SAV 245.07 - 400

PRECISION SINE TABLES with amplified holding force Swivelling around longitudinal and transverse axis

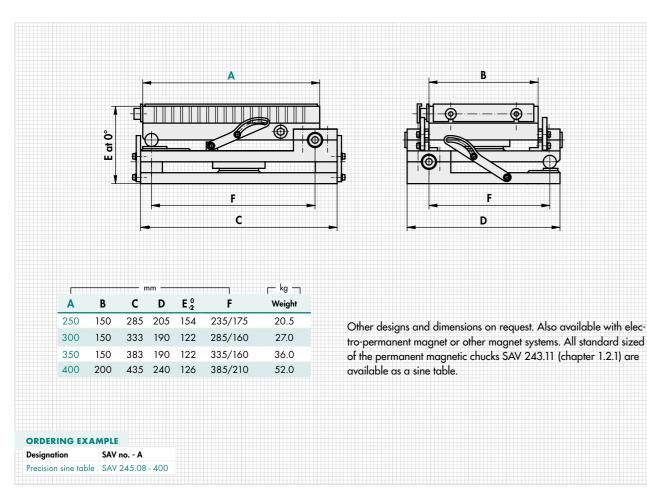
0 4 0 1

DESIGN

Swivelling around longitudinal and transverse axis. With sine table base unit made of steel. Hardened, burnished and precision-ground. Maximum precision with flat design. Standard version with permanent magnetic chuck SAV 243.11. Delivered in a wooden storage box.

With sine table with degrees/minutes in mm, precision length stop and transverse stop bar.

APPLICATION


The angles are determined using the gauge blocks using the sinusoidal principle.

Clamping is achieved with a fastening brace at the side and the upper bearing shells.

TECHNICAL DATA

- Angle accuracy: ±5 arc sec
- Plane parallelism: ±0.005/100 mm
- Gauge block at 0°: 3 mm
- Swivelling range, long axis: 0° to 45°
- Swivelling range, short axis: 0° to 30°
- Rated holding force: 150 N/cm²
- Pole pitch: 15 mm
- Magnetic field height: 12 mm
- Wear layer of the pole plate: 5 mm

SAV 245.09

PRECISION SINE TABLES

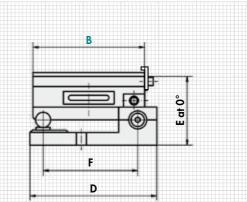
Swivelling around longitudinal axis, for the highest requirements

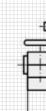
DESIGN

With sine table base unit made of steel. Hardened, burnished and precision-ground. Magnet housing annealed without stress. Maximum precision with flat design. 4-point contact for optimum precision.

Delivered with a lifting aid, rod and sine table with degrees/ minutes in mm.

Precision longitudinal stop with transverse stop bar, 3 m connecting cable, painted magnet housing. Available alternatively with electrical chucks and integrated water cooling for P = 13 (EM) or electro-permanent magnetic chucks for P = 4 (EP).

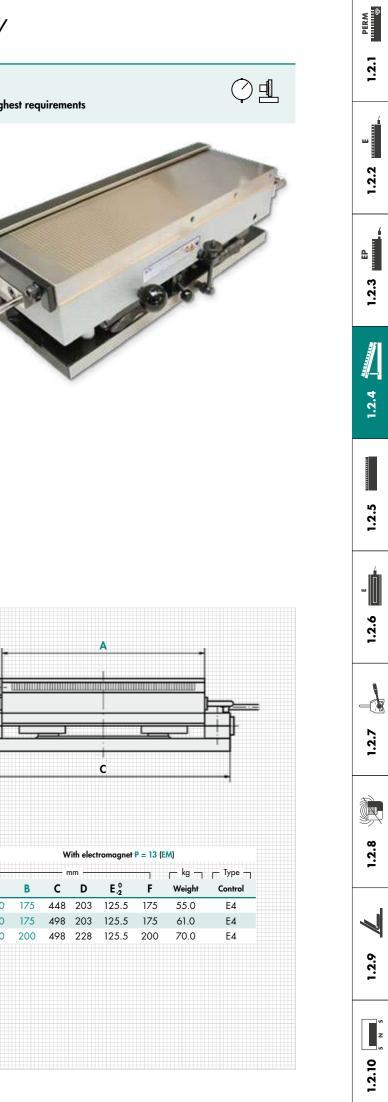

APPLICATION


The angles are determined using the gauge blocks using the sinusoidal principle.

TECHNICAL DATA

- Angle accuracy: ±5 arc sec
- Plane parallelism: ±0.005/100 mm
- Gauge block at 0°: 0/5 mm
- Swivelling range: 0° to 45°
- Rated holding force: 100 N/cm²
- Pole pitch:
- 4 mm for EP magnet as per SAV 243.73 13 mm for EM magnet as per SAV 243.42
- Magnet voltage:
- 210 V for EP

24 V or 110 V for EM


		With el	ectro-pe	ermanent n	nagnet P	= 4 (EP)		
-		r r	nm —			kg	1 F A1	F
Α	В	С	D	E .2	F	Weight	Magnet current	Α
450	175	448	203	125.5	175	55.0	30	450
500	175	498	203	125.5	175	61.0	30	500
500	200	498	228	125.5	200	70.0	30	500

Other designs and dimensions on request. Also available with other magnet systems.

ORDERING EXAMPLE

 Designation
 SAV no. - A x B - pole pitch - version - magnet voltage

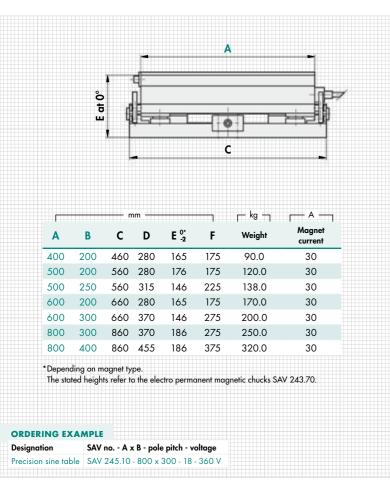
 Precision sine table
 SAV 245.09 - 500 x 200 - 4 - EP - 210 V

PRECISION SINE TABLES

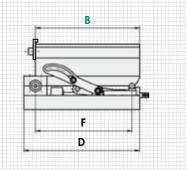
Swivelling around longitudinal axis, permanently installed on machine table

DESIGN

With sine table base plate made of steel. Annealed without stress. All structural elements made of steel. Hardened and precision-ground. Sturdy design with high precision. With mechanical adjustment gear or hydraulic swivelling aid, depending on size. Maximum precision with flat design. 4-point contact for optimum safety.


Standard version with electro permanent magnetic chuck as per SAV 243.70. Pole pitch 13, 18 or 25 mm. Delivered with sine table with degrees/minutes in mm, precision longitudinal stop with transverse stop bar, 3 m connecting cable, painted magnet housing, ratchet and socket.

APPLICATION


The angles are determined using the gauge blocks using the sinusoidal principle.

TECHNICAL DATA

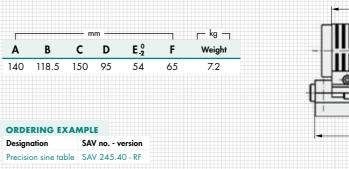
- Gauge block at 0°: 5 mm
- Swivelling range: 0° to 45°
- Angle accuracy: ±5 arc sec
- Plane parallelism: ±0.005/100 mm
- Pole pitch: 13/18/25 mm
- Rated holding force: 90/110/115 N/cm²
- Magnet voltage: 360 V

Other designs and dimensions on request. Also available with electromagnet or other magnet systems. Please state the required magnet when ordering (see chapters 1.2.1, 1.2.2 and 1.2.3).

SAV 245.40

PRECISION SINE TABLE

[also stainless version] swivelling arour


DESIGN

With switchable permanent magnetic chuck block SAV 242.11. With sine table base unit made of steel. Hardened, burnished and precision-ground. Delivered in a wooden storage box with sine table with degrees/minutes in mm. Stainless version (RF) available.

APPLICATION

The angles are determined using the gauge blocks using the sinusoidal principle. The switchable magnetic chuck block can be removed and can therefore also be used without a sine table.

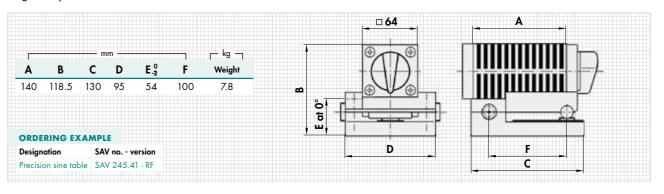
All four chucking areas of the chuck block are magnetically active.

SAV 245.41

PRECISION SINE TABLE

[also stainless version] Swivelling around the transverse axis

DESIGN


With switchable permanent magnetic chuck block SAV 242.11. With sine table base unit made of steel. Hardened, burnished and precision-ground. Delivered in a wooden storage box with sine table with degrees/minutes in mm. Stainless version (RF) available.

TECHNICAL DATA

- Angle accuracy: ±5 arc sec
- Plane parallelism: ±0.005/100 mm
- Gauge block at 0°: 3 mm
- Swivelling range: 0° to 45°
- Rated holding force: 50 N/cm²
- Rated holding force, stainless: 30 N/cm²

APPLICATION

The angles are determined using the gauge blocks using the sinusoidal principle. The switchable magnetic chuck block can be removed and can therefore also be used without a sine table. All four chucking areas of the chuck block are magnetically active.

SAV	
I SINE TABLE version] swivelling around the longitudinal axis	़⊈∎∎
 FECHNICAL DATA Angle accuracy: ±5 arc sec Plane parallelism: ±0.005/100 mm Gauge block at 0°: 3 mm Swivelling range: 0° to 45° Rated holding force: 50 N/cm² Rated holding force, stainless: 30 N/cm² 	
SINE TABLE	\bigcirc \blacksquare \blacksquare

PERM

1.2.1

-

1.2.2

EP

1.2.3

1.2.4

1.2.5

1.2.6

_

1.2.7

Ì

1.2.8

1.2.9

1.2.10

MAGNETIC BLOCKS with scale Swivelling around centre axis to both sides

DESIGN

Sturdy design. Readout from degree scale. Swivelling with manual lever. Switchable permanent magnet with fine pole pitch P = 1.9 mm, swivelling through.

APPLICATION

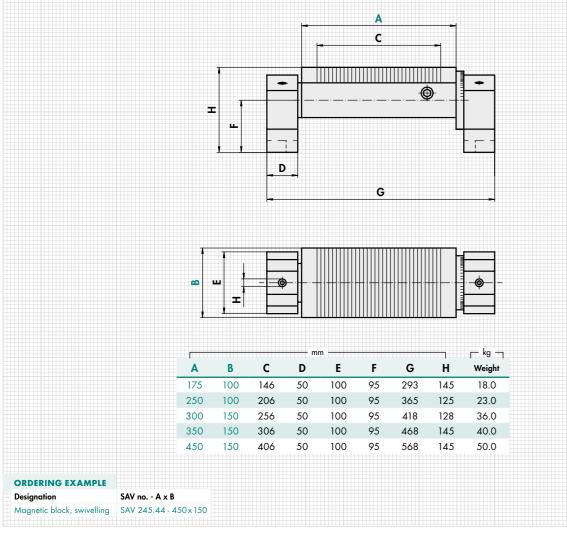
Easy alignment using degree scale or a sine bar.

TECHNICAL DATA

- Swivelling range: -90° to +90°
 Plane parallelism: ±0.005/100 mm
- Rated holding force: 90 N/cm²
- Magnetic field height: 6 mm
- Wear layer of the pole plate: 8 mm

► APPLICATIONS

PRECISION SINE TABLE


For blade grinder L = 1.4 m, distortion-free clamping with Spieth sleeves

 $S \wedge V$

SAV 245.06 as special version

S/W

TOP PLATES, MAGNETIC CLAMPING BLOCKS AND ACCESSORIES

LAMI

	MAGNET SYSTEMS	SAV AGNETIC CLAMPING BLOCKS				1.2.1 PERM
	AND ACCESSO		PAGES	147 - 155		
	SAV ART. NO.	COMMENTS	POLE PITCH	PAGE		1.2.2
LAMINATED	TOP PLATES/TOP ST	RIPS LAMINATED BLOCKS				
	248.01	For placing on round magnets with transverse pole pitch	4 mm	147		
	248.02	For placing on magnetic chucks with parallel pole pitch	4 mm	147		Ð
_	248.03	For placing on magnetic chucks	4 mm	148		1.2.3
A Same Case	248.40	For chucking non-magnetic workpieces	-	148		
	248.60	For placing on magnetic chucks	4 mm	149		
	248.61	Laminated block (set) in plastic case	4 mm	149		1.2.4
PERMANEN	T MAGNETIC CLAMPI	NG BLOCKS				
	242.01	2 or 3 magnetic chucking areas	1.3 – 4 mm	150		
	242.02	With 3 magnetic chucking areas, can be switched on and off	1.5 mm	150		
2	242.07	1 magnetic chucking area, controllable	-	151		1.2.5
	242.11	4 magnetic chucking areas, also as a stainless version	4 mm	151		, the second sec
NEODYMIU		5				
and the second	242.05	Extremely high holding force	6 mm	152		1.2.6
1	242.12	For EDM, stainless, with extremely high holding force	6 mm	152		
PERMANEN	T MAGNETIC BEAMS					-
-	243.15	With transverse pole pitch	1.3 mm	153		1.2.7
PERMANEN	T MAGNETIC V BLOC	ĸ			·	
	242.21	4 magnetic contact surfaces, 2 opposite switching points	Bipolar	153		
	242.22	2 magnetic contact surfaces, switched on and off together	Bipolar	154		æ.
0	242.25	2 magnetic contact surfaces, switched on and off together	Bipolar	154		1.2.8
S /	242.29	3 magnetic contact surfaces, sealed design	_	155		
	242.31	4 magnetic contact surfaces; prism with strong holding force, controllable	Bipolar	155		Ž
						1.2.9

PERM

~	
2	
	and the second s

	SAV		
aystems ATES, M	AGNETIC CLAMPING BLOCKS		
CCESSO		PAGES	147 - 155
ART. NO.	COMMENTS	POLE PITCH	PAGE
TES/TOP ST	RIPS LAMINATED BLOCKS		
3.01	For placing on round magnets with transverse pole pitch	4 mm	147
3.02	For placing on magnetic chucks with parallel pole pitch	4 mm	147
3.03	For placing on magnetic chucks	4 mm	148
3.40	For chucking non-magnetic workpieces	_	148
3.60	For placing on magnetic chucks	4 mm	149
3.61	Laminated block (set) in plastic case	4 mm	149
TIC CLAMP	ING BLOCKS		
2.01	2 or 3 magnetic chucking areas	1.3 – 4 mm	150
2.02	With 3 magnetic chucking areas, can be switched on and off	1.5 mm	150
2.07	1 magnetic chucking area, controllable	-	151
2.11	4 magnetic chucking areas, also as a stainless version	4 mm	151
	S		
2.05	Extremely high holding force	6 mm	152
2.12	For EDM, stainless, with extremely high holding force	6 mm	152
TIC BEAMS			
3.15	With transverse pole pitch	1.3 mm	153
TIC V BLOC	K		
2.21	4 magnetic contact surfaces, 2 opposite switching points	Bipolar	153
2.22	2 magnetic contact surfaces, switched on and off together	Bipolar	154
2.25	2 magnetic contact surfaces, switched on and off together	Bipolar	154
2.29	3 magnetic contact surfaces, sealed design	_	155
2.31	4 magnetic contact surfaces; prism with strong holding force, controllable	Bipolar	155

NEOD

PERM

		SAV			
	NET SYSTEMS PLATES, M	AGNETIC CLAMPING BLOCKS			
ANC	ACCESSO	RIES	PAGES	147 - 155	
	SAV ART. NO.	COMMENTS	POLE PITCH	PAGE	
D TOP	PLATES/TOP ST	RIPS LAMINATED BLOCKS			-
	248.01	For placing on round magnets with transverse pole pitch	4 mm	147	
	248.02	For placing on magnetic chucks with parallel pole pitch	4 mm	147	
	248.03	For placing on magnetic chucks	4 mm	148	
	248.40	For chucking non-magnetic workpieces	-	148	-
	248.60	For placing on magnetic chucks	4 mm	149	
	248.61	Laminated block (set) in plastic case	4 mm	149	
		ING BLOCKS			
	242.01	2 or 3 magnetic chucking areas	1.3 – 4 mm	150	
	242.02	With 3 magnetic chucking areas, can be switched on and off	1.5 mm	150	
and a	242.07	1 magnetic chucking area, controllable	-	151	
	242.11	4 magnetic chucking areas, also as a stainless version	4 mm	151	
M MA	GNETIC BLOCK	S			
	242.05	Extremely high holding force	6 mm	152	
	242.12	For EDM, stainless, with extremely high holding force	6 mm	152	-
	GNETIC BEAMS				
	243.15	With transverse pole pitch	1.3 mm	153	
IT MA	GNETIC V BLOC	K			-
	242.21	4 magnetic contact surfaces, 2 opposite switching points	Bipolar	153	
1	242.22	2 magnetic contact surfaces, switched on and off together	Bipolar	154	
	242.25	2 magnetic contact surfaces, switched on and off together	Bipolar	154	
3	242.29	3 magnetic contact surfaces, sealed design	_	155	
	242.31	4 magnetic contact surfaces; prism with strong holding force, controllable	Bipolar	155	

PERM

	\leq		
iet systems PLATES, M	AGNETIC CLAMPING BLOCKS		
ACCESSO	RIES	PAGES	147 - 155
AV ART. NO.	COMMENTS	POLE PITCH	PAGE
PLATES/TOP ST	RIPS LAMINATED BLOCKS		
248.01	For placing on round magnets with transverse pole pitch	4 mm	147
248.02	For placing on magnetic chucks with parallel pole pitch	4 mm	147
248.03	For placing on magnetic chucks	4 mm	148
248.40	For chucking non-magnetic workpieces	_	148
248.60	For placing on magnetic chucks	4 mm	149
248.61	Laminated block (set) in plastic case	4 mm	149
	ING BLOCKS		
242.01	2 or 3 magnetic chucking areas	1.3 – 4 mm	150
242.02	With 3 magnetic chucking areas, can be switched on and off	1.5 mm	150
242.07	1 magnetic chucking area, controllable	-	151
242.11	4 magnetic chucking areas, also as a stainless version	4 mm	151
GNETIC BLOCK	5		
242.05	S Extremely high holding force	6 mm	152
242.12	For EDM, stainless, with extremely high holding force	6 mm	152
SNETIC BEAMS			
243.15	With transverse pole pitch	1.3 mm	153
SNETIC V BLOC	ĸ		
242.21	4 magnetic contact surfaces, 2 opposite switching points	Bipolar	153
242.22	2 magnetic contact surfaces, switched on and off together	Bipolar	154
242.25	2 magnetic contact surfaces, switched on and off together	Bipolar	154
242.29	3 magnetic contact surfaces, sealed design	_	155
242.31	4 magnetic contact surfaces; prism with strong holding force, controllable	Bipolar	155
	controllable		

power. people. passion.

1.2.10 **• • •**

APPLICATIONS

ELECTRO PERMANENT MAGNETIC SYSTEM

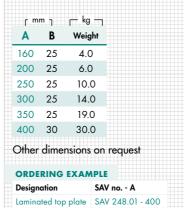
With active longitudinal stops on exchangeable top plates for milling of small notched impact test bending samples

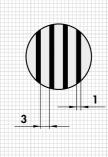
SAV 248.01

LAMINATED TOP PLATES

For placing on circular magnets with parallel pole pitch

APPLICATION


For chucking profiled workpieces on magnets


with parallel pole pitch.

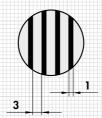
DESIGN

Any type and form of profiles can be machined into the chuck blocks (can also be provided by us). Note maximum machining dimension for this. Attaching to a magnet upon agreement. The pole division must run parallel to the base magnet.

SAV 248.02

LAMINATED TOP PLATES

For placing on magnetic chucks with transverse pole pitch

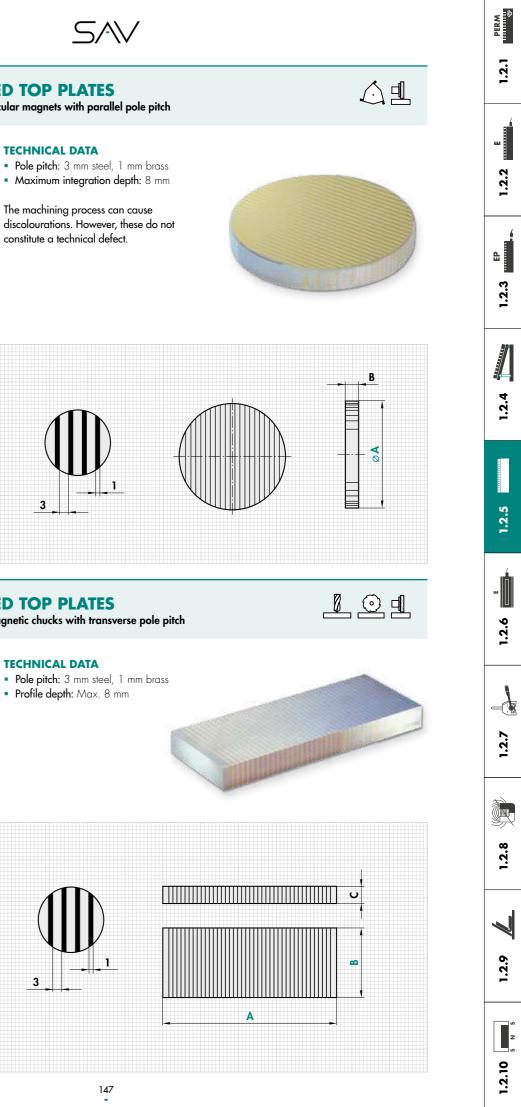

APPLICATION

As top plate for magnets with transverse pole pitch. Can only be used in conjunction with magnetic chuck with parallel divisions. Especially suitable in conjunction with magnetic chuck SAV 243.11 (chuck 1.2.1).

TECHNICAL DATA

• Pole pitch: 3 mm steel, 1 mm brass Profile depth: Max. 8 mm

Α	В	С	Weight
250	150	25	7.5
300	150	25	9.0
400	150	25	12.0
300	200	25	12.0
400	200	25	16.0
250	250	25	12.5
400	250	25	19.5



ORDERING EXAMPLE Designation SAV no. - A x B Laminated top plate SAV 248.02 - 250 x 150

TECHNICAL DATA • Pole pitch: 3 mm steel, 1 mm brass

• Maximum integration depth: 8 mm

147

SAV 248.03

LAMINATED TOP PLATES

For placing on magnetic chucks with parallel pole pitch

APPLICATION

For placing on magnetic chucks with parallel divisions to conduct the magnetic field into the workpiece.

DESIGN

Attaching to a magnet upon agreement.

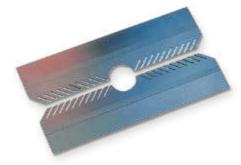
TECHNICAL DATA

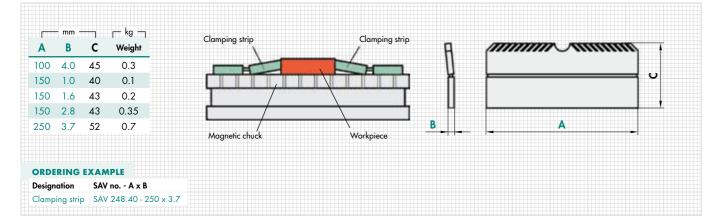
- Pole pitch: 3 mm steel, 1 mm brass
- Profile depth: Max. 8 mm

-	- mm -		r kg -			- mm -		r- kg -
Α	В	С	Weight		Α	В	С	Weight
320	75	25	4.8		250	75	25	3.8
650	75	25	9.8		500	75	25	7.5
					250	100	25	5.0
320	100	40	10.1		500	100	25	10.0
650	100	40	20.5		400	75	25	6.0
Design with longitudinal pole pitch					250	75	40	6.0
osigii		Jino anno	ii poio piidii		500	75	40	12.0
					200	100	40	6.4
					400	100	40	12.8
					500	100	40	16.0
					Version	with tra	nsverse	pole pitch
ORDE	RING	EXAN	PLE					
Desigr	ation		SAV no A x	BxC	:			
lamin	ated top	plata	SAV 248.03 -	100	× 100 y	(10		

SAV 248.40

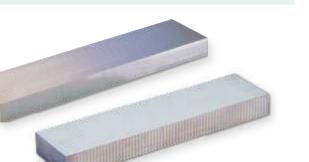
CLAMPING STRIPS


For chucking non-magnetic workpieces


APPLICATION

For secure chucking of non-magnetic materials on magnets.

DESIGN


The clamping strips are made of ferromagnetic metal and have a spring-loaded strip on the long side which presses the workpiece onto the contact surface when the magnet is activated (hold-down effect). Delivered in pairs. Size 100 x 4 without workpiece stop, all other sizes with workpiece stop.

3

LAMINATED BLOCKS SAV 248.60

For placing on magnetic chucks with parallel pole pitch

APPLICATION

TECHNICAL DATA

In conjunction with magnetic chucks for parallel pole division direction for machining irregular workpieces.

DESIGN

Longitudinal and transverse pole pitch and prisms.

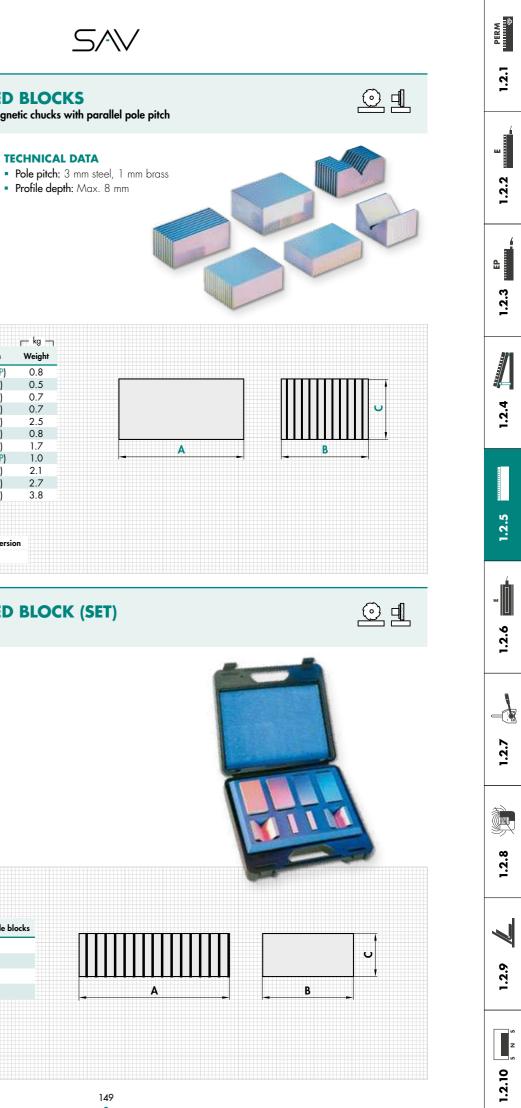
	D	~	5 L K K	- ·	r kg
Α	В	C	Pole direction	Design	Weight
65	60	40	Transverse pole (Q)	Prism (P)	0.8
72	45	22	Transverse pole (Q)	Flat (E)	0.5
75	60	30	Longitudinal pole (L)	Flat (E)	0.7
80	60	30	Transverse pole (Q)	Flat (E)	0.7
80	80	50	Transverse pole (Q)	Flat (E)	2.5
90	62	33	Longitudinal pole (L)	Flat (E)	0.8
100	50	40	Longitudinal pole (L)	Flat (E)	1.7
100	50	40	Longitudinal pole (L)	Prism (P)	1.0
100	70	41	Transverse pole (Q)	Flat (E)	2.1
100	70	48	Longitudinal pole (L)	Flat (E)	2.7
120	80	50	Transverse pole (Q)	Flat (E)	3.8
ORDE	RING	EXA	MPLE		
Design	ation	5	SAV no A x B x C - pole di	rection - versi	on
Lamino	ited blo	ock S	SAV 248.60 - 75 x 60 x 30	- L - E	

SAV 248.61

LAMINATED BLOCK (SET) In plastic case

APPLICATION

In conjunction with magnetic chucks for machining irregular workpieces.


DESIGN

Chuck block set with longitudinal and transverse pole pitch and prisms in a case.

TECHNICAL DATA

- Pole pitch: 3 mm steel, 1 mm brass
- Profile depth: Max. 8 mm
- Total weight: 7.6 kg

	- mm -				
Α	В	С	Design	Number of pole blocks	_
56	32	15	Transverse pole	2 x	
96	57	26	Transverse pole	2 x	
76	53	22	Longitudinal pole	2 x	
56	68	47	With prism	2 x	-
ORDI	ERING	EXAN	APLE		

U

SAV 242.01

For profiling and machining small workpieces,

recommend chuck MH 204 with extra-fine pole

Two or three magnetic chucking areas, pole

pitch 4 mm, for MH 204 pole pitch 1.3 mm.

Chuck blocks MH 201S to MH 203S made of

SmCo₅ magnets with extremely high holding

В

100

50

25

25

100

100

100

Permanent magnetic clamping block SAV 242.01 - MH 201

С

50

50

25

25

SAV no. - type

5′

5'

e.g. dies. For chucking thin parts, we

APPLICATION

pitch.

DESIGN

PERMANENT MAGNETIC CLAMPING BLOCKS With fine and extra-fine pole pitch

80 N/cm² for MH 201 to MH 204

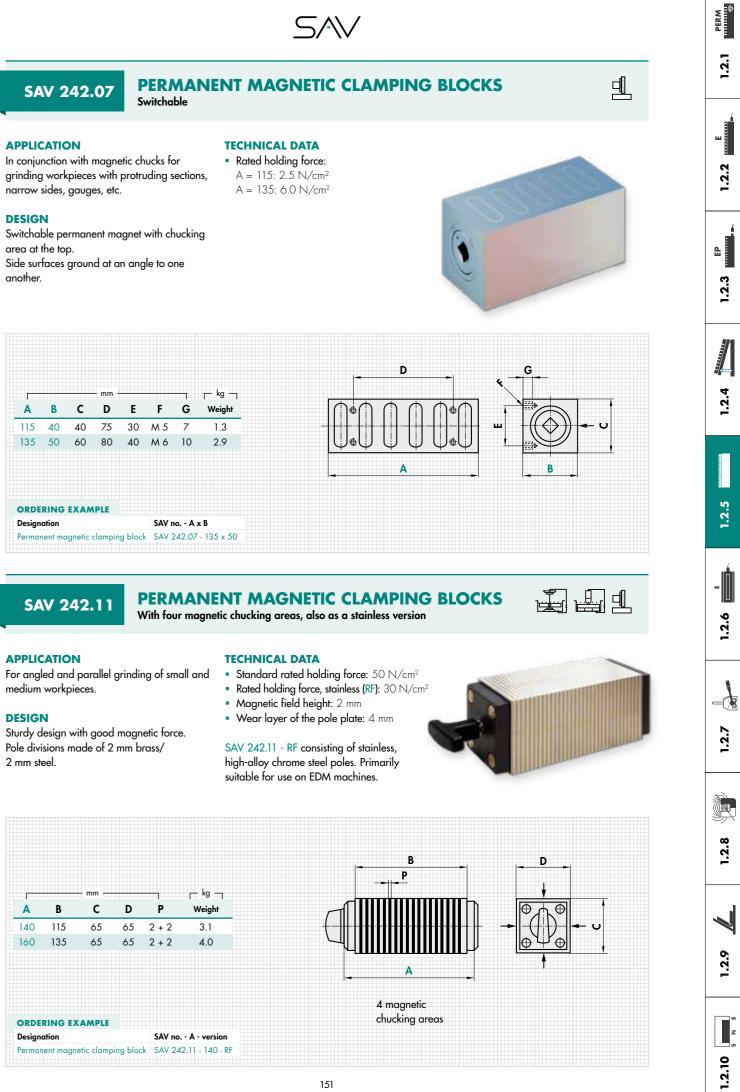
14 mm for MH 201 and MH 202

6 mm for MH 203 and MH 204

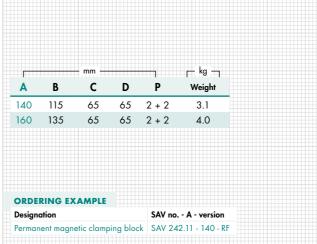
180 N/cm² for MH 201S to MH 203S

TECHNICAL DATA

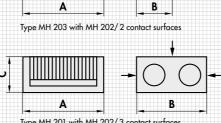
Rated holding force:


• Magnetic field height: 6 mm

Wear layer of the pole plate:


 $A = 115: 2.5 \text{ N/cm}^2$ $A = 135: 6.0 \text{ N/cm}^2$

area at the top. Side surfaces ground at an angle to one another.



DESIGN

Pole divisions made of 2 mm brass/ 2 mm steel.

force for materials which are difficult to chuck. r kg ¬ max. 🚽 Contact surfaces Weight Angle de 1 area 100 x 100 3.6 2 areas 100 x 50 3 areas 100 x 50 1.7 5

Type MH 201 with MH 202/3 contact surfaces

SAV 242.02

Туре

MH 201 MH 201S

MH 203 MH 203S

ORDERING EXAMPLE

MH 204

Designation

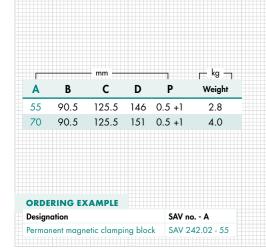
MH 202 MH 202S 100

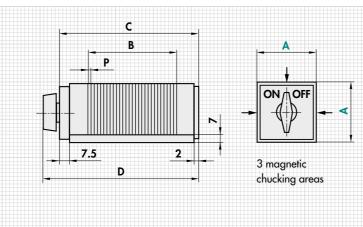
PERMANENT MAGNETIC CLAMPING BLOCKS With three magnetic chucking areas

2 areas 100 x 25

2 areas 100 x 25

0.5


0.5


APPLICATION

For angled and parallel grinding of small and medium workpieces. Suitable as an add-on block for the base magnet on the machine.

DESIGN

Switched on and off with a rotary knob. 3 magnetic contact surfaces.

- **TECHNICAL DATA** • Rated holding force: 60 N/cm²
- Magnetic field height: 2 mm
- Pole divisions: 0.5 mm brass / 1.0 mm steel

150

APPLICATION

SAV 242.05 SAV 242.12

NEODYMIUM MAGNETIC BLOCKS With P = 6 mm transverse pole pitch, neodymium iron boron magnets,

extremely high holding force

APPLICATION

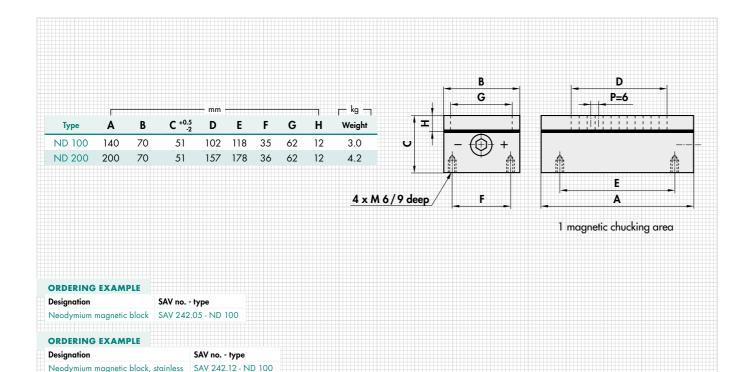
For workpieces which are difficult to chuck, e.g. Ferro-Tic, tungsten carbide with cobalt content, very small workpieces. For fast and easy chucking - also for workpieces with complicated EDM contours or workpieces which are difficult to chuck.

DESIGN

Extremely high holding force using a specially developed process. Sturdy solid steel body. ON/OFF control on the face side. Larger versions also available with force-actuated control mechanism on request. Pole divisions made of 4 mm steel and 2 mm brass with NdFeB magnets in the pole gap.

AS STAINLESS VERSION SAV 242.12

High holding force due to specially developed process. Sturdy solid steel body. ON/OFF control on the face side. Precision-ground version.

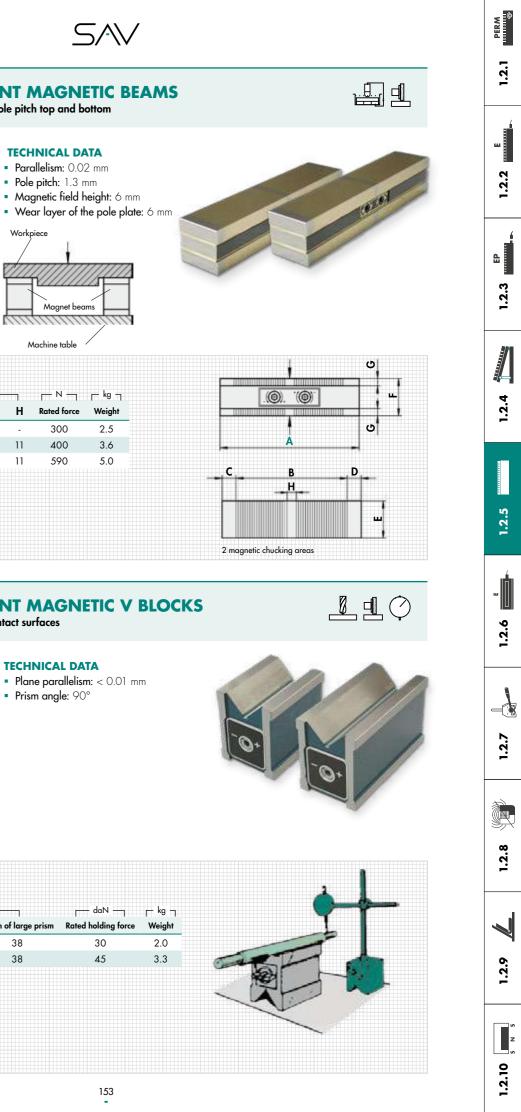

Housing, ON-switch and pole grid stainless, poles made of steel.

TECHNICAL DATA

- Rated holding force on inducible steel surface: 180 N/cm²
- Rated holding force: 120 N/cm²
- Magnetic field height: approx. 4 mm
- Wear layer of the pole plate: 3 mm
- Available with adaptation for zero-point workholding system

SAV 243.15

PERMANENT MAGNETIC BEAMS


With transverse pole pitch top and bottom

APPLICATION

As a workholding fixture for holding workpieces on EDM machines and machine tools, for jigs, etc.

DESIGN

Two opposite chucking areas, separate switching. Only available in pairs. Low magnetic field due to fine pole pitch.

			mi	m ——					⊢ kg ⊣
Α	В	С	D	Е	F	G	н	Rated force	Weight
125	98	13.5	13.5	52	50	15	-	300	2.5
180	153	13.5	13.5	52	50	15	11	400	3.6
250	225	12.5	12.5	52	50	15	11	590	5.0
ORDE	RING E	XAMPL	E						
Designe	ation		SAV	/ no A					
Perman	ent mag	netic bec	m SAV	/ 243.13	5 - 125				

SAV 242.21

PERMANENT MAGNETIC V BLOCKS Four magnetic contact surfaces

APPLICATION Positioning

DESIGN

4 magnetic contact surfaces (top and bottom and 2 face sides) which are switched on and off together.

2 opposite control points including removable key. Wooden storage box SAV 539.02 - HK2 available (surcharge applies).

Available individually (S) and in pairs (P). The prism pair is ground to the same height.

r Length	Width	Height	- mm Workpiece diameter	Width of large prism	Rated holding f
80	60	73	6 - 50	38	30
125	60	73	6 - 50	38	45
ORDER Designat	ING EX	AMPLE	SAV no length		
Permane	ent magne	tic V block	SAV 242.21 - 125		

– daN

surfac

90

120

Rat

ed holding force,

r kg -

Weight

2.9

3.8

PERMANENT MAGNETIC V BLOCKS SAV 242.22

Individually and in pairs

APPLICATION

Width

67

70

ORDERING EXAMPLE

SAV 242.25

96

96

Permanent magnetic V block SAV 242.22 - 100 - S

6 - 66

6 - 70

SAV no. - length - individual or pair

With two magnetic chucking areas

80

100

Designation

APPLICATION

Positioning

DESIGN

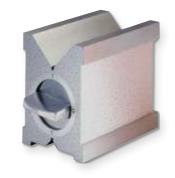
Positioning

DESIGN

2 magnetic contact surfaces which are switched on and off together (large prism and opposite prism). Available individually (S) and in pairs (P). Wooden storage box SAV 539.02-HK2 (for S) and SAV 539.04-HK4 (for P) (surcharge applies).

TECHNICAL DATA

- Perpendicularity: 0.004 mm Parallelism: 0.004 mm
- Prism angle: 90°


– daN

Rated holding force,

prism

40

40

PERMANENT MAGNETIC V BLOCKS SAV 242.29 Sealed version

DESIGN

TECHNICAL DATA Prism angle: 90°

3 magnetic contact surfaces (top surface with prism and 2 faces). Including removable key. Strong, switchable permanent magnet. 2 prisms ground together at the same height Fully sealed. Wooden storage box available (surcharge

applies). Supplied in pairs.

Length	Width	Height	Width of prism	Workpiece diameter	Rated holding force
70	40	50	36	50	15
100	50	80	60	80	20
150	50	100	90	125	23
ORDER Designat	ING EX/	AMPLE	SAV no len	ath	

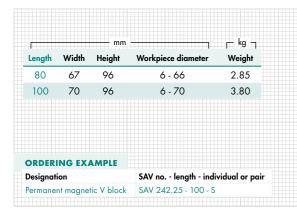
SAV 242.31

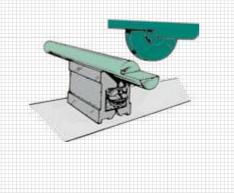
PERMANENT MAGNETIC CLAMPING BLOCKS With strong prism

DESIGN

4 magnetic contact surfaces (top surface, bottom surface prism and 2 sides). Including removable key. Strong, switchable permanent magnet.

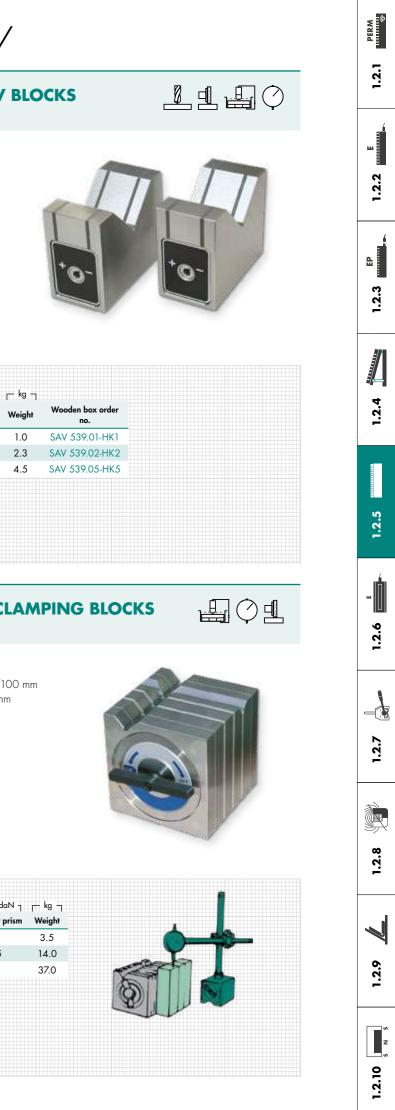
TECHNICAL DATA


- Perpendicularity: 0.025/100 mm
- Parallelism: 0.015/100 mm
- Prism angle: 90°


2 magnetic contact surfaces which are switched on and off together (large prism and opposite prism). Measuring surface and prism hardened. Available individually (S) and in pairs (P). Wooden storage box SAV 539.04 - HK4 available (surcharge applies).

TECHNICAL DATA Perpendicularity 0.004 mm

PERMANENT MAGNETIC V BLOCKS


- Parallelism: 0.004 mm
- Prism angle: 90°

1	— mm —	1	r- Wo	rkpiece	e diameter in mm 🖵	F Rated hold	ding force in de
Length	Width	Height	Main p	orism	Secondary prism	Main prism	Secondary p
80	80	80	10 -	25	8 - 15	12	10
125	125	125	10 -	40	10 - 26	30	12,5
180	180	180	14 -	50	14 - 50	40	30
ORDER Designat	ING EX/	AMPLE		SAV r	no length		
ermane	nt maane	tic clampin	a block	SAV	242.31 - 180		

154

1.2 STANDARD MAGNET SYSTEMS 1.2.6 ELECTRO HOLDING MAGNETS

	SAV ART. NO.	COMMENTS	PAGE
ELECTRO HOL	DING MAGNETS	5	
•	241.29	Flat design, for use in handling applications	158
8	241.31	In 2 connection types, for use in toolmaking and production	159
6	241.32	Electro magnetic bars with high holding forces	160
P	241.40	Permanent magnets, electrical deactivation	161
ę	241.41	Permanent magnets, electrical deactivation	162

APPLICATIONS

Electro magnetic chucks SAV 241.31 as special version with tapered pole for bulk materials.

power. people. passion.

CHAPTER

SAV

ELECTRO HOLDING MAGNETS

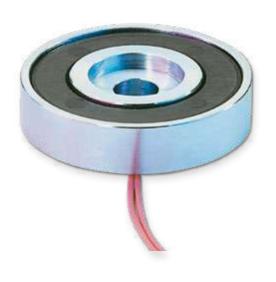
SAV 241.29

ELECTRO HOLDING MAGNETS

Flat design

APPLICATION

Due to the extremely low height, these chucks are primarily used in handling applications. The magnet is active when switched on and is used for holding ferromagnetic workpieces. To achieve the rated holding force, the steel surfaces of the contact side must be fully covered by the workpiece.


DESIGN

The chucks consist of an electro magnetic holding system. Depending on the area of application, the applicable accident prevention regulations must be observed. For devices of protection class 1, the user must ensure the PE connection as per VDE 0100 par. 6.

TECHNICAL DATA

The technical information (chapter 1.4) must be observed when using the devices.

- Rated voltage: 24 V DC
- Duty cycle: 100 % duty cycle
- Protection rating: IP 65 (as per DIN 40050)
- Insulation material class: E

SAV

SAV 241.31

ELECTRO HOLDING MAGNETS In two connection types

APPLICATION

Electro holding magnets provide workholding of ferromagnetic workpieces. Their use can offer substantial benefits in toolmaking, in production and in the turnaround of small and large bulk parts. To achieve the rated holding force, the steel surfaces of the contact side must be fully covered by the workpiece.

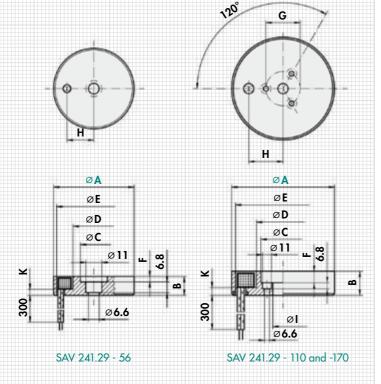
TECHNICAL DATA

The max. holding forces FH are provided for steel 1.0037 and refer to the optimum workpiece density with an air gap $\delta L = 0$ mm and 100 % coverage of the contact surface at 90 % of the rated voltage and at operating temperature (approx. 70 K overtemperature without additional heat dissipation).

If different conditions apply to the application, the holding force will be lower.

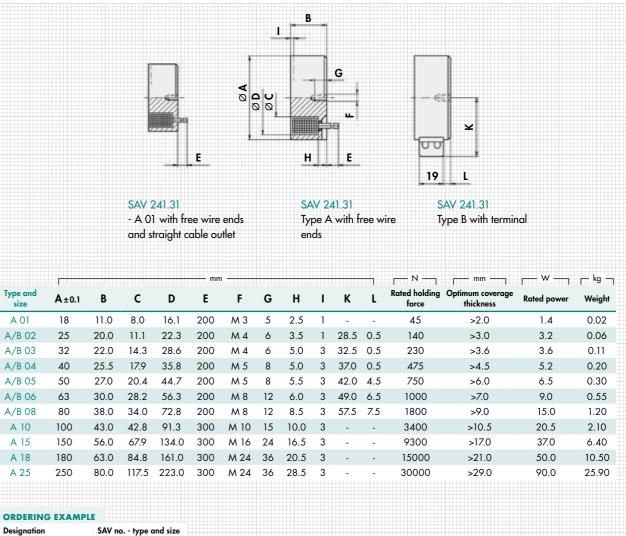
- Rated voltage: 24 V DC
- Duty cycle: 100 % duty cycle
- Insulation material class: E

Electro holding magnet SAV 241.31 - A 01


INFORMATION ON TECHNICAL DATA:

The max. holding forces are stated for steel 1.0037 and refer to the optimum workpiece thickness with an air gap of $\delta L = 0$ mm and 100 % coverage of the contact surface. The values are listed for 90 % rated voltage and at operating temperature (approx. 60 K overtemperature without additional heat dissipation).

If different conditions apply to the application, the rated holding force is reduced (see Technical information, chapter 1.4). For safety reasons, a safety factor should be used depending on the application.


The table values for the rated capacity are maximum values for determining the electrical accessory parts and refer to 20 °C excitation winding temperature at rated voltage (VDE 0580/10.70 § 9.1). During operation, the rated power reduces depending on the proportional duty cycle.

The chuck is fastened from the front using cheese-head screws.

A +0,1 -0,3	В	С	D	E	F	G	н	Т	к	Rated holding force	Optimum coverage thickness	Power	Weight
6	13	23	32	51.5	4	-	23.5	-	3.7	750	>4.0	7.1	0.17
10	21	53.5	65.3	103.5	10	40	49.2	26	5.5	2050	>6.0	14.7	0.90
170	29	90.7	110.3	158	19	76	76.4	60	9.0	5000	>10.0	31.4	3.00

Electro holding magnet SAV 241.29 - 170

		<u>г</u> м – ,	г mm	w	kg
К	L	Rated holding force	Optimum coverage thickness	Rated power	Weight
-	-	45	>2.0	1.4	0.02
28.5	0.5	140	>3.0	3.2	0.06
32.5	0.5	230	>3.6	3.6	0.11
37.0	0.5	475	>4.5	5.2	0.20
42.0	4.5	750	>6.0	6.5	0.30
49.0	6.5	1000	>7.0	9.0	0.55
57.5	7.5	1800	>9.0	15.0	1.20
-	-	3400	>10.5	20.5	2.10
-	-	9300	>17.0	37.0	6.40
-	-	15000	>21.0	50.0	10.50
-	-	30000	>29.0	90.0	25.90

ELECTRO MAGNETIC BARS

With high holding forces

APPLICATION

Type C devices are suitable for holding parts with flat surfaces, while type D devices can be used for parts with uneven or scaled surfaces. To achieve the rated holding force, the steel surfaces of the contact side must be fully covered by the workpiece.

DESIGN

The electro magnetic bar chucks are direct-current workholding systems. The magnet is active when switched on and is used for holding ferromagnetic workpieces. Tapped holes are provided on the underside for fastening. 2 easily accessible screws inside the device are provided for the electrical connection. In addition, a PG gland is provided for attaching a strain-relieved cable. This gland can be screwed in either from the side or from underneath. When working with electromagnetic bar chucks, the corresponding accident prevention regulations must be observed depending on the application.

TECHNICAL DATA


- Rated voltage: 24 V DC
- Insulation material class: E
- Protection rating: Device IP 53 (as per DIN 40050 connection IP 00)
- Duty cycle: 100 % duty cycle

INFORMATION ON TECHNICAL DATA:

The table values for the rated capacity are maximum values for determining the electrical accessory parts and refer to 20 °C excitation winding temperature at rated voltage (VDE 0580/10.70 § 9.1). During operation, the rated power reduces depending on the proportional duty cycle. The pole pitch and its influence on the action principle is described in the technica information. The max. holding forces FH are provided for stee 1.0037 and refer to a plate thickness of > 8 mm for type C and > 10 mm for type D. The forces are listed for an air gap δ = 0 mm and 100 % coverage of the contact surface, 90 % of the rated voltage and at operating temperature (approx. 50 K overtemperature without additional heat dissipation). If different conditions apply to the application, the rated holding force is reduced (see Technical information, chapter 1.4). For safety reasons, a safety factor should be used depending on the application.

		15	- ^B -	1 _		-	۹	2.5"
s 	- PG	7 Fx0	3 3	_	z	©	E	
L		ax. wec e pole p		er of	-	м 	к .]_
к	L	м	N	0	Pole step	Rated holding force	Rated power	⊢ ^{kg} ⊣ Weight

Type and size	A	B	c	D	E	F	G	н	I	К	L	м	Ν	0	Pole step	Rated holding force	Rated power	Weight
C 01	101.5	32	2 31	20	50	2	M 6	10	13.5	68.0	10	23.5	12	8.5	16	880	7	0.65
C 02	151.5	32	2 31	20	50	3	M 6	10	13.5	118.0	10	23.5	12	8.5	16	1500	10.5	0.88
C 03	201.5	32	2 31	20	50	4	M 6	10	13.5	168.0	10	23.5	12	8.5	16	2100	14	1.22
C 04	401.5	32	2 31	20	50	8	M 6	10	13.5	368.0	10	23.5	12	8.5	16	4700	25	2.48
C 05	501.5	32	2 31	20	50	10	M 6	10	13.5	468.0	10	23.5	12	8.5	16	6000	35	3.15
C 06	601.5	32	2 31	20	50	12	M 6	10	13.5	568.0	10	23.5	12	8.5	16	7200	42	3.75
D 07	151.5	60) 49	30	75	2	M 8	12	15.0	93.5	12	36.5	18	10.0	30	2600	22	2.35
D 08	201.5	60) 49	35	120	2	M 8	12	15.0	143.5	12	36.5	18	10.0	30	3750	31	3.20
D 09	501.5	60) 49	35	140	4	M 8	12	15.0	443.5	12	36.5	18	10.0	30	10400	70	9.20
ORDER	ING EXA	MP	PLE 🔛															
Designa	tion		SAV no.	- type o	ınd size													
Electro r	magnetic b	ar	SAV 24	1.32 - D	09													

SAV 241.40

PERMANENT ELECTRO HOLDING MAGNETS

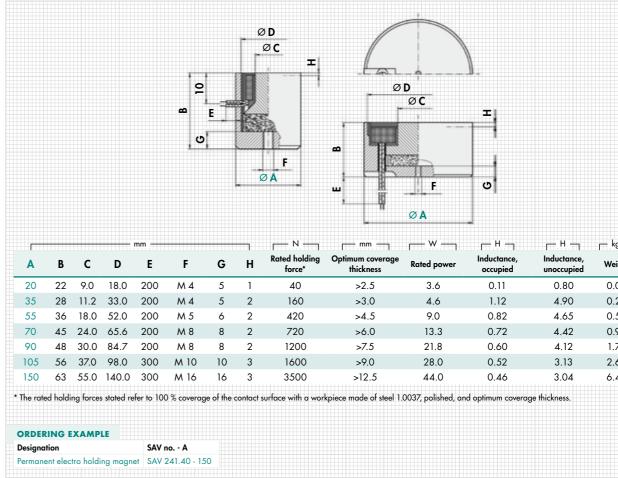
Electrically deactivated permanent magnets

 S^{A}

APPLICATION

Because the permanent electro magnetic workholding system is active when the device is de-energised, these chucks are preferably used where long holding times are required and no holding force is required only for short periods or occasionally. They are also used as safety magnets in transport systems and lifting gear, as the load is reliably held during a power failure. To achieve the rated holding force, the steel surfaces of the contact side must be fully covered by the workpiece.

DESIGN


The chucks consist of a permanent magnet system for holding ferromagnetic workpieces and an excitation winding which neutralises the magnetic field on the contact surface when activated, allowing the workpiece to be removed or the load to be released. Depending on the application, the applicable accident prevention regulations must be observed.

TECHNICAL DATA

The technical information (chapter 1.4) must be observed when using the devices.

- Rated voltage: 24 V DC
- Insulation material class: E
- Protection rating: Device IP 65 (as per DIN 40050)
- Duty cycle: 25 % duty cycle with a cycle time of < 2 min or 40 % duty cycle with a cycle time of < 0.5 min

A reliable deactivation of the permanent magnet system is achieved if the stated values for the duty cycle and cycle time are observed and at a rated voltage of +5 % or -10 %. This ensures reliable releasing of the magnetically held parts. The occurring residual force is then max. 3 % of the rated holding force. During continuous operation, this chuck is not thermally overloaded. The overtemperature of the excitation winding occurring during this process, however, increases the residual holding force.

The relative duty cycle is:

rel. duty cycle = $\frac{\text{duty cycle}}{\text{Cycle time}} \bullet 100 \%$

- mm	г— w — ,	г— Н — ,	г- Н	r kg -
ium coverage hickness	Rated power	Inductance, occupied	Inductance, unoccupied	Weight
>2.5	3.6	0.11	0.80	0.04
>3.0	4.6	1.12	4.90	0.20
>4.5	9.0	0.82	4.65	0.50
>6.0	13.3	0.72	4.42	0.90
>7.5	21.8	0.60	4.12	1.70
>9.0	28.0	0.52	3.13	2.60
>12.5	44.0	0.46	3.04	6.40

SAV 241.41

PERMANENT ELECTRO HOLDING MAGNET

Electrically deactivated permanent magnet

APPLICATION

Because the permanent electro magnetic workholding system is active when the device is de-energised, these chucks are preferably used where long holding times are required and no holding force is required only for short periods or occasionally. They are also used as safety magnets in transport systems and lifting gear, as the load is reliably held during a power failure. To achieve the rated holding force, the steel surfaces of the contact side must be fully covered by the workpiece.

DESIGN

The chucks consist of a permanent magnet system for holding ferromagnetic workpieces and an excitation winding. When activated, the excitation winding neutralises the magnetic field on the contact surface and the workpieces can be removed/released. If the excitation winding is switched concordantly, the rated force increases. Depending on the area of application, the applicable accident prevention

regulations must be observed.

TECHNICAL DATA

The technical information (chapter 1.4) must be observed when using the devices.

- Rated voltage: 24 V DC
- Insulation material class: E
- Protection rating: Device IP 65 (as per DIN 40050)
- Duty cycle: 100 % duty cycle

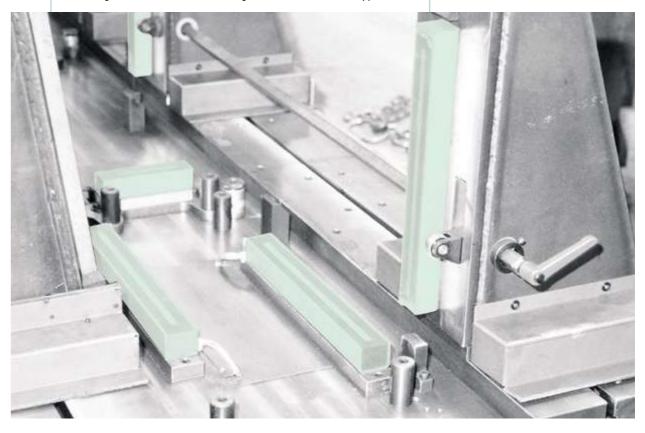
INFORMATION ON TECHNICAL DATA:

The max. holding forces are stated for steel 1.0037 and refer to the optimum workpiece thickness with an air gap of $\delta L = 0$ mm and 100 % coverage of the contact surface. The values are listed for operating temperature. No thermal overload occurs with continuous operation. The occurring overtemperature, however, increases the residual holding force.

If different conditions apply to the application, the rated holding force is reduced (see Technical information, chapter 1.4).

For safety reasons, a safety factor should be used depending on the application.

The table values for the rated capacity are maximum values for determining the electrical accessory parts and refer to 20 °C excitation winding temperature at rated voltage (VDE 0580/10.70 § 9.1). During operation, the rated power reduces depending on the proportional duty cycle.


— kg — Α G С D F 32.2 >10.0 40 28 15.5 2 M 4 5 200 260 24 0.2 ORDERING EXAMPLE SAV no Designation Permanent electro holding magnet SAV 241.41

Magnetic welding fixture, special version. Details see below.

 $S^{\}$

Detail: Positioning with mechanical stops. Chucking is achieved with electro magnetic bars SAV 241.32, type D.

ØA

ØC

ØD

F

I

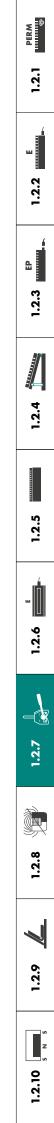
æ

G

1.2 STANDARD MAGNET SYSTEMS 1.2.7 LIFTING MAGNETS

	SAV ART. NO.	COMMENTS	PAGE
	NETS		
	531.01	Permanent lifting magnets	166
Û	531.42	Battery lifting magnets	167
-	531.20	Permanent magnetic claws	168
Z	531.92	Permanent magnet transport lifters	168

 $S \wedge V$


APPLICATION

power. people. passion.

PAGES 166 - 168

SAV 531.01

APPLICATION

For lifting and transporting loads up to 2000 kg. Manually actuated magnets for individual use.

SPECIAL FEATURES

- Powerful neodymium magnets offer maximum carrying capacity on uneven and rough contact surfaces.
- SAV lifting magnets are tested individually and delivered with a test certificate.
- The pull-off force is at least triple the carrying capacity
- The carrying capacity for round materials is at least 50 % of the load bearing capacity for flat materials
- Easy-to-operate lever with safety interlock
- Compact, robust and reliable

APPLICATIONS

- Loading and unloading of machine tools
- Handling of bars and profiles in the warehouse
- Handling of panels, tubes, bars and profiles in steel construction

Model 150: Milling machine loading and unloading

Model 300: Cast part on machining centre

Model 1200: Solid round material

Model 2000: Heavy component

	Model		150	300	400	1200	2000
_			150	300	600	1200	2000
	Rated carrying capacit	у*					
	 Flat materials 	kg	150	300	600	1200	2000
	 Round materials 	kg	65	150	300	600	1000
	Minimum thickness	mm	2	4	6	10	15
	Min./max. diameter	mm	40/100	60/200	65/270	100/300	150/350
	Length x width	mm	93 x 60	152 x 100	246 x 120	306 x 146	480 x 165
	Height to crane hook	mm	110	164	164	216	253
	Weight	kg	2.6	10.0	20.0	40.0	90.0
	* Rated carrying capacity: Maximum weight for parts mo The carrying capacity varies				nt size and thickness.		
RDERI esignati	NG EXAMPLE	SAV no mod	el				
rmaner	nt lifting magnet	SAV 531.01 - 1	150				

SAV 531.42

BATTERY LIFTING MAGNETS

APPLICATION

For lifting and transporting loads up to 5000 kg without power supply. Autonomous electro magnet for individual use with infrared control.

SPECIAL FEATURES

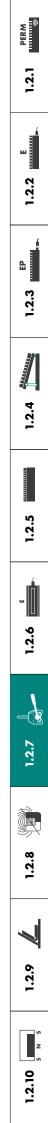
- Robust steel housing with control and charging unit and maintenance-free 12 V battery.
- A switch on the lifting eye prevents switching off during the lifting process
- Loading level indicator, optical/acoustic alarm signal for undercurrent and low battery capacity
- Activation is blocked if the battery voltage is low
- Operation with infrared control with 10 m range or on the magnet
- Modern electronics with short reaction time
- Delivery includes battery, infrared transmitter, operating instructions and test certificate
- Complies with European directives and standards
- With variable holding force and function for dropping thin plates so the rest can be transported safely; operated with infrared remote control
- BM model flat version with one or two magnets for lifting flat materials. BM model designed for sheet metal up to 6000 x 3000 mm.
- BMP model with prism and deep magnetic field for lifting profiles, tubes and round materials

APPLICATIONS

- In steel construction and at shipyards for transporting sheet metal and profiles:
- Loading and clearing flame cutting or laser cutting machines - Loading and unloading of machine tools
- For material handling in the steel trade
- Transport of heavy moulds, cast and forged parts

Model		BM 1350	BM 2500	BM 3600	BM 5000	BMP 1800	BMP 3600
Design		Flat 1 magnet	Flat 1 magnet	Flat 1 magnet	Flat 2 magnets	Prismatic 1 magnet	Prismatic 1 magnet
Rated carrying ca Flat materials Round materials Min./max. diar	kg s kg	1350	2500	3600	5000	1800 1130 45/440	3600 2200 45/500
Length x width	mm	272 x 242	400 x 242	1050 x 240	1200 x 300	470 x 242	760 x 262
Height to crane h	ook mm	460	460	460	460	610	630
12 V battery	Ah	35	75	75	75	75	75
50 % duty cycle	h	8	8	8	8	8	8
Charging voltage	VAC	230	230	230	230	230	230
Weight	kg	54.0	105.0	180.0	230.0	144.0	395.0
 Rated carrying capa Maximum weight for The carrying capacit 	parts made of steel			cient size and thickness	5.		
ORDERING EXAM							
Designation	SAV no model						
Battery lifting magnet	SAV 531.42 - BM	1350					

166



BM 2500

BMP 1800

PERMANENT MAGNETIC CLAWS

APPLICATION

For crane lifting of workpieces which can no longer be transported by hand

DESIGN

Sturdy design with hand lever for easy releasing of the workpieces (sheet metal, etc.). Both types are suitable for horizontal and vertical lifting. Particularly suitable for lifting sheet metal from 4 mm thickness.

Rated hole	ding force	daN	250	300
Rated dr	ag force	daN	100	125
Release	force, max.	daN	750	900
Length		mm	290	290
Width		mm	125	180
Weight		kg	7.5	10.5
ORDERING EXAM	PLE			
Designation	SAV no rate	ed holding force		

Permanent magnetic claw SAV 531.20 - 250

SAV 531.92 PERMANENT MAGNET TRANSPORT LIFTERS

APPLICATION

For transporting and lifting sheet metal.

DESIGN

High magnetic force, sturdy design. GS-tested safety. With very high holding force, approx. 85 times of its own weight.

Rec. holding force*	daN	120*	170*	300*
Release force	daN	240*	340*	600*
Drag force	daN	70	100	180
Length	mm	140	140	160
Width	mm	84	116	180
Weight	kg	1.4	1.8	3.5
measured on drawn ma	terial steel 1.0	0037 K, 25 mm	thick	
ING EXAMPLE				
on	SAV no	holding force		

Designation	SAV no holding force
Permanent magnet transport lifter	SAV 531.92 - 300

ELECTRO LIFTING MAGNETS – SPECIAL VERSION

SIZE 540 x 430 mm

WORKPIECE Railway rails

APPLICATION Lifting

DESCRIPTION

- Special version
- Strong magnet system for
- large air gaps
- Version for open-air operation

SPECIAL ELECTRO PERMANENT HANDLING MAGNETS

SIZE

500 x 160 mm

WORKPIECES

Linear guideways

APPLICATION Handling

DESCRIPTION

- Special version
- Low volume and weight
- Version with optimised holding force

168

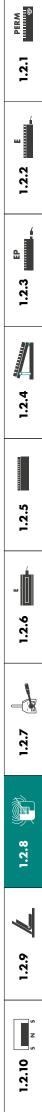
PERM 1.2.1 1.2.2 4 1.2.3 1.2.4 1.2.5 -1.2.6 -1.2.7 È 1.2.8 Ź 1.2.9

1.2.10

1.2 STANDARD MAGNET SYSTEMS 1.2.8 DEMAGNETISERS AND ACCESSORIES

	SAV ART. NO.	COMMENTS	MACHINING PROCESS*	PAG
	NETIZERS			
i 🏈	890.02	For use in measuring rooms, workshops and production lines	X	172
	GNETISERS			
	890.42	For demagnetising large-area, thin-walled production workpieces	Ì	172
	890.43	For automatic demagnetising of workpieces on the production line	A	173
	AGNETISERS			
\gg	890.70	For demagnetising the surface of large workpieces, mobile use	E	173
8	890.71	For demagnetising workpieces, tools, dies, milling heads, etc.	Ì	174
TESTING INSTR	UMENTS			
	486.04	Gauss pocket magnetometer	\Diamond	174
	878.05	Teslameter	\Diamond	175
	486.40	Holding force tester	\bigcirc	175

power. people. passion.


HAP		

 $S \wedge V$

DEMAGNETISERS AND ACCESSORIES

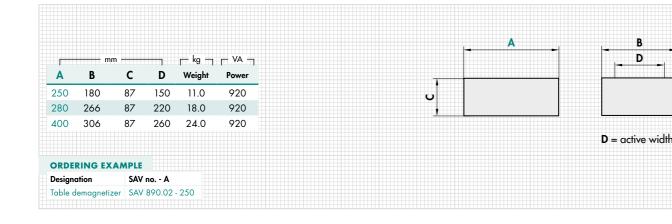
SAV 890.02

TABLE DEMAGNETIZERS Standard device

SAV 890.43

For automatically demagnetising large-area, thin-walled parts

APPLICATION


The demagnetisers are suitable for use in measuring rooms, workshops and production lines and have a strong action for demagnetising bearing rings, dies, swages and other tools.

TECHNICAL DATA

- Power supply: 230 V/50 Hz AC
- Protection rating: IP 20
- Duty cycle: 100 duty cycle
- Power consumption: max. 920 W
- Penetration depth: approx. 50 mm

D

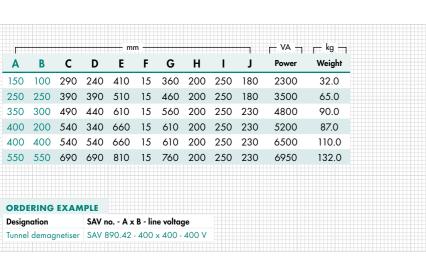
SAV 890.42

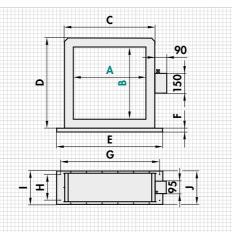
TUNNEL DEMAGNETISER For demagnetising large-area, thin-walled parts

APPLICATION

Α

Designation


An interfering residual magnetism can remain in steel and cast workpieces after machining. If these parts have to be demagnetised for other purposes, this can usually be easily achieved with the tunnel demagnetisers.


DESIGN

Demagnetising coil cast in polyurethane, optionally with low-frequency generator for workpieces which are difficult to demagnetise.

TECHNICAL DATA

- Protection rating: IP 55
- Power supply: 400 VAC
- Supply frequency: 50 to 60 Hz
- Other voltages on request

APPLICATION

For automatic demagnetising on the production line with continuous plastic transport belt and drive motor.

The workpieces are moved through the tunnel with a speed of approx. 0.2 m/s. A low-frequency generator can be used as a ballast unit for parts which are difficult to demagnetise.

DESIGN Demagnetising coil cast in polyurethane, optionally with low-frequency generator for workpieces which are difficult to demagnetise. Belt and table versions upon agreement or

TECHNICAL DATA

- Protection rating: IP 65
- Power supply: 400 V
- Supply frequency: 50 to 60 Hz
- Other voltages on request

		- mm -				
A	В	С	D	E	Power	
250	200	290	140	200	3500	NOTE
50	300	490	240	300	4800	Table lengths and desig
00	400	540	340	350	6500	workpieces to be demag
550	550	690	490	500	6950	Min. length 2.5 m
ORDE	RING	EXAN	IPLE			
esign	ation			SAV	no A x B - lin	e voltage
unnel	demaa	netiser	with bel	t SAV	890.43 - 550	x 550 - 400 V

ð

SAV 890.70

MANUAL DEMAGNETIZERS

For universal use

APPLICATION

For demagnetising the surfaces of larger workpieces. Mobile use.

DESIGN

Lightweight housing for easy handling. 3 m cable with connector.

TECHNICAL DATA

- Rated voltage: 230 V/50 Hz Power consumption: 220 VA
- Protection rating: IP 42
- Automatic shutdown: at > 50 °C
- Duty cycle: 30 %

Туре	Size of the o	active zone	Power supply	Depth of the magnetic field	
HD 1	105 x 7	75 mm	220 - 240 V / 50Hz	20 mm	
HD 2	150 x 9	95 mm	220 - 240 V / 50Hz	40 mm	
ORDERIN	G EXAMP	PLE			
ORDERING Designation		PLE SAV no ty	pe		

SAV 890.71

MANUAL DEMAGNETISER For bar materials and tools

For demagnetising workpieces, tools, dies, milling heads, etc.

DESIGN

Robust plastic housing, with high capacity. Also suitable for heavy-duty operation. Not suitable for continuous operation! Includes thermal fuse and LED as operating indicator.

TECHNICAL DATA

- Hole diameter: 40 mm
- Rated voltage: 230 V/50 Hz
- Duty cycle: 10 % duty cycle • Max. operating period: 10 s
- Weight: 0.9 kg

ð

 \bigcirc

S/V

SAV 878.05

TESLAMETER

Compact device with large measuring range

APPLICATION

For measuring residual remanence on workpieces and tools, in holes and gaps. Suitable for micro magnetic fields and very strong fields. For measuring magnetic flux densities and the field distribution on magnetic chucks.

DESIGN

Lightweight and compact design. Housing protected against dirt. Energy-saving function for long battery life. Liquid crystal display (LCD) with digital measured value output. If the sensor is worn, it can easily be reordered and replaced (SAV 878.05 - S).

TECHNICAL DATA

- Display either in Tesla (T) or Gauss (G)
- Static and dynamic measurements
- Maximum value display for dynamic
- measurements
 - Magnetic pole indicator N/S
 - Zero-point adjustment
 - Measuring range for static fields: 0 – 1500 mT
 - Measuring range for dynamic fields: 0 – 750 mT
 - Measuring accuracy: ±5 %
 - service temperature: 0 40 °C
 - Dimensions: 150 x 150 x 25 mm
 - Weight: 0.25 kg

ORDERING EXAMPLE SAV no. Designation Manual demagnetiser SAV 890.71

SAV 486.04

GAUSS POCKET MAGNETOMETER For fields with low flux density

APPLICATION

For detecting remanence on workpieces and tools as a pole indicator.

CAUTION

The device is only intended for identifying residual fields and must not be exposed to a concentrated magnetic field.

TECHNICAL DATA

- Measuring range: ±50 G (±5 mT)
- Diameter: 65 mm
- Weight: 0.14 kg

SAV 486.40

ORDERING EXAMPLE

Teslameter SAV 878.05

Designation SAV no.

HOLDING FORCE TESTER

For comparing magnetic workholding systems

APPLICATION

- For measuring the holding force on:
- Permanent magnetic chucks
- Electro magnetic chucks
- Electro permanent magnetic chucks

APPLICATION

ORDERING EXAMPLE

Holding force tester SAV 486.40

SAV no.

Designation

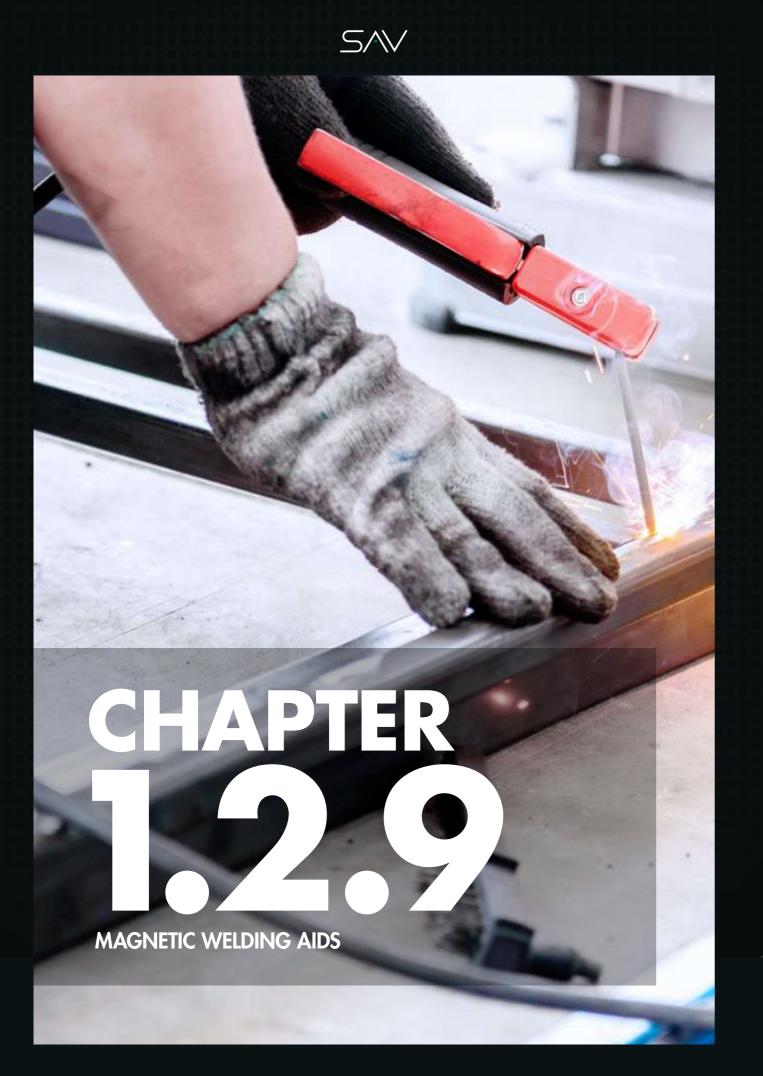
The required pressure can be generated by turning the screw clockwise with an Allen key. The integrated pressure piston is moved far enough so that the measuring cylinder is lifted off the magnet plate when the holding force limit is reached. More application information in chapter 1.4.

• Weight: 2.0 kg • Outer diameter: 50 mm

TECHNICAL DATA

ORDERING EXAMPLE SAV no. Designation Gauss pocket magnetometer SAV 486.04

Automatic measuring range selection



 \bigcirc

• The displayed pressure in bar corresponds to the comparison pull-off force in daN/cm²: 0-25 bar according to 0-25 daN/cm².

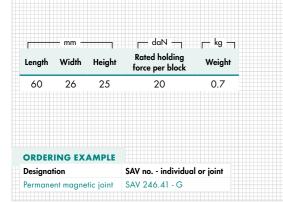
1.2 STANDARD MAGNET SYSTEMS 1.2.9 MAGNETIC WELDING AIDS

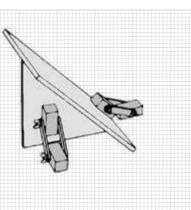
	SAV ART. NO.	COMMENTS	PAGE
A	246.41	Permanent magnetic joint	178
	246.50	Permanent magnet multi-angle setter	178
Â.	246.54	Permanent magnet multi-angle setter	179
	246.60	Permanent magnet welding bracket	180
1	246.61	Permanent magnet welding bracket	181
	532.03	Permanent magnetic sheet fanners	182
alalala	482.70	Permanent magnetic bases	183
-	532.11	Hand destacker with belt	183

power. people. passion.

PERMANENT MAGNETIC JOINT

Magnetic aid for welding and assembly


APPLICATION


As a welding aid for holding sheets, flat iron, etc. To avoid overloading the magnetic joint thermally, we recommend using the magnetic aid only for the tack welds and then removing it.

DESIGN

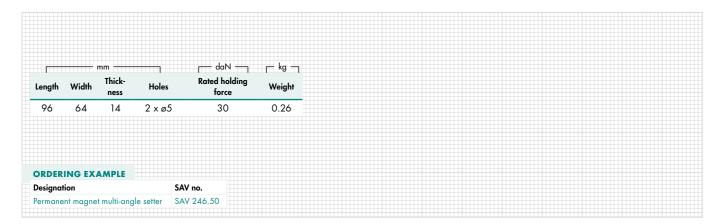
Two permanent magnet chucks connected with struts. Any angle can be set. Can be clamped with two wing nuts. Delivered individually (5) or as a joint (G).

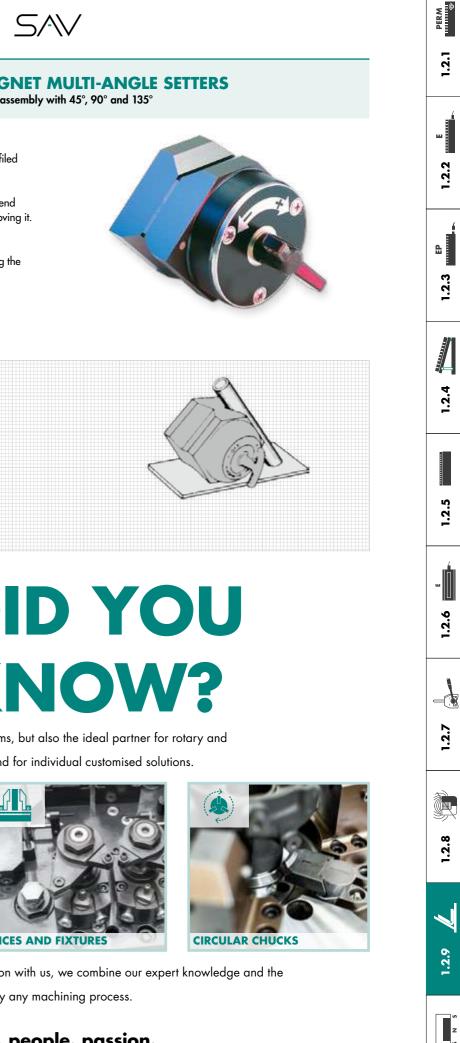
SAV 246.50

PERMANENT MAGNET MULTI-ANGLE SETTER

Magnetic aid for welding and assembly with defined angles

APPLICATION


As a welding and assembly aid for frame processing with angles of 180°, 90°, 75°, 60°, 45° and 30°.


If higher holding forces are required, several mitre holders can be stacked. The maximum application temperature of 120 °C should not be exceeded. We therefore recommend using the mitre holders for the tack welds and then removing them.

DESIGN

All edges are magnetic. Provided holes allow easy and fast positioning.

1.2.10

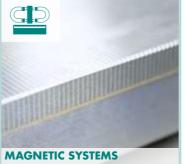
SAV 246.54

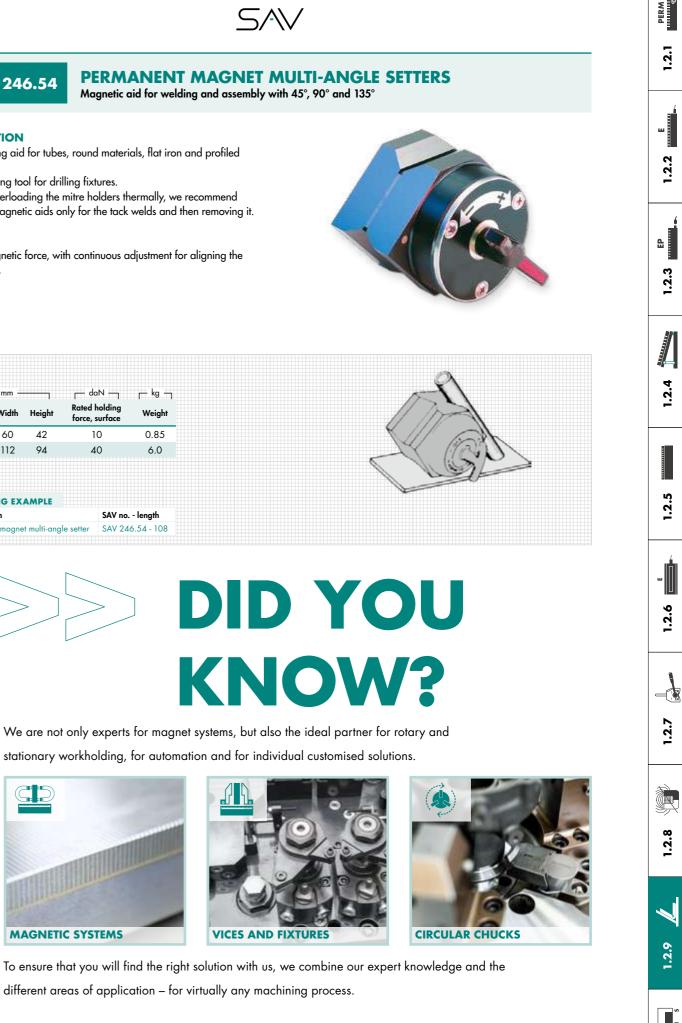
APPLICATION

As a welding aid for tubes, round materials, flat iron and profiled iron

As a chucking tool for drilling fixtures.

To avoid overloading the mitre holders thermally, we recommend using the magnetic aids only for the tack welds and then removing it.


DESIGN


Strong magnetic force, with continuous adjustment for aligning the workpieces.

r	— mm —	1	r daN -	r kg -
Length	Width	Height	Rated holding force, surface	Weight
60	60	42	10	0.85
112	112	94	40	6.0

ORDERING EXAMPLE SAV no. - length Designation SAV 246.54 - 108 Permanent magnet multi-angle setter

stationary workholding, for automation and for individual customised solutions.

different areas of application - for virtually any machining process.

power. people. passion.

SAV 246.60

PERMANENT MAGNET WELDING BRACKETS

Magnetic aid for welding and assembly with 90°

APPLICATION

For efficient holding of welding parts at a 90° angle. Used for small, lightweight parts to heavy sheets, depending in size. To avoid overloading the welding brackets thermally, we recommend using the magnetic aids only for the tack welds and then removing it.

DESIGN

Sturdy design, both faces are magnetic, easily released by applying pressure from the side. The normal version (N) is intended for workpieces with bright surfaces.

The amplified version (V) is also suitable for workpieces with scaled or dirty surfaces.

The tube version (R) welding brackets are equipped with prism-shaped pole shoes and are therefore particularly suitable for processing round materials and tubes.

The 2-pole (2) magnetic brackets with 2 protruding magnetic bars are designed for the construction of large machinery, steel construction, shipyards, crane construction, etc. A stake attached to both sides facilitates alignment using a hammer. The welding brackets - starting with SAV 246.60 - 116 - are suitable for small, lightweight parts to applications in the construction of large machinery, shipyards, crane construction, etc. finishing with SAV 246.60 - 450.

SAV 246.61

PERMANENT MAGNETIC WELDING BRACKETS

Magnetic aid for welding and assembly with different angles

APPLICATION

For efficient holding of welding parts with different angles. With scale for angles from 45° to 225°. Used for small, lightweight parts to heavy sheets, depending in size.

To avoid overloading the welding brackets thermally, we recommend using the magnetic aids only for the tack welds and then removing it.

DESIGN

Sturdy design, both faces are magnetic, easily released by applying pressure from the side. The normal version (N) is intended for workpieces with bright surfaces.

The amplified version (V) is also suitable for workpieces with scaled or dirty surfaces.

The tube version (R) welding brackets are equipped with prism-shaped pole shoes and are therefore particularly suitable for processing round materials and tubes.

Design				Dim	ensions				
	Side length	in mm	116/116	145/145	175/175	260/175	230/230	330/240	320/320
	Width	in mm	38	45	48	48	60	60	60
√ (normal)	Rated holding force*	in daN	32	38	58	88/95	-	-	-
	Displacement force*	in daN	14	16	26	42/44	-	-	-
	Weight	in kg	0.7	1.1	1.6	2.1	3.1	4.3	5.0
	Side length	in mm	116/116	145/145	175/175	260/175	230/230	330/240	320/320
	Width	in mm	38	45	48	48	60	60	60
reinforced)	Rated holding force*	in daN	48	52	79	132/142	-	-	-
	Displacement force*	in daN	21	24	35	63	-	-	-
	Weight	in kg	0.75	1.15	1.7	2.2	3.3	4.5	5.15
	Side length	in mm	120/120	150/150	180/180	265/180	235/235	-	-
	Width	in mm	38	45	48	48	60	-	-
R (tube)	Rated holding force*	in daN	-	38	50	88/95	-	-	-
	Displacement force*	in daN	-	16	22	42	-	-	-
	Weight	in kg	0.85	1.25	1.8	2.45	3.05	-	-
	Side length	in mm	350/350	450/4 50	-	-	-	-	-
	Width	in mm	60	60	-	-	-	-	-
2-pole	Rated holding force*	in daN	-	-	-	-	-	-	-
	Displacement force*	in daN	-	-	-	-	-	-	-
	Weight	in kg	8.4	11.5	-	-	-	-	-
rated holding fo rmation (chapter	rce and displacement force sta 1.4).	ated refer to	a sheet metal tl	hickness of 4 mn	n. More detailed	d influencing pc	arameters can b	e found in the te	əchnical
DERING EXAN	APLE								

Design		Dim	ensions		
	Side length	in mm	130/130	180/180	20
	Width	in mm	38	45	
N (normal)	Rated holding force*	in daN	32	58	(
	Displacement force*	in daN	14	38	
	Weight	in kg	0.75	1.5	
	Side length	in mm	130/130	180/180	20
	Width	in mm	38	45	
V (reinforced)	Rated holding force*	in daN	48	87	14
	Displacement force*	in daN	21	57	
	Weight	in kg	0.8	1.55	
	Side length	in mm	130/130	180/180	20
	Width	in mm	38	45	
R (tube)	Rated holding force*	in daN	-	48	
	Displacement force*	in daN	-	22	
	Weight	in kg	0.9	1.7	

and in the technical into

ORDERING EXAMPLE SAV no. - max. side length - version Designation Permanent magnet welding bracket SAV 246.61 - 260 - V

SAV 532.03

PERMANENT MAGNETIC SHEET FANNERS For separating sheets

APPLICATION

For separating stacked iron and steel sheets during insertion tasks into metal processing machines. The sheets are placed between the magnetic floaters and magnetised with the same poles. This causes

the sheets to repel each other and float freely, which makes them easy to grip.

To prevent jamming of the sheets, the magnet floaters must be positioned so that an air gap of 1 to 2 mm is created.

DESIGN

The strong permanent magnets are installed in a robust steel housing. The tapped holes provided allow the unit to be fastened to fixtures. Delivered individually.

В	С	D	Е	F	For sheet thickness up to	Weight					
73	28	50	2	M 8	0.7	1.0					
5 73	28	200	2	M 8	0.7	4.0		В	-		C _
2 73	28	250	2	M 8	0.7	5.0		1			
8 103	28	100	2	M 8	1	5.0	\frown			ſ	
8 103	28	200	2	M 8	1	7.0	T				-+-+-
2 103	28	250	2	M 8	1	8.0		E	xF		
3 104	49	100	2	M 8	2	6.0					
7 104	49	200	2	M 8	2	11.0		— · - ф. · ·			
0 104	49	200	2	M 8	2	12.0					
3 155	47	100	2	M 8	3	8.0					
0 155	47	150	2	M 8	3	12.0					-+-+-
0 155	47	200	2	M 8	3	18.0					
1 155	47	150	3	M 8	3	24.0					
1 155	47	200	3	M 8	3	29.0					
7 179	88	200	2	M 12	4	34.0					
0 179	88	150	3	M 12	4	50.0					
4 279	94	100	3	M 12	6	71.0					
5 279	94	150	4	M 12	6	112.0					
2 279	94	150	4	M 12	6	126.0					
3 279	94	200	4	M 12	6	168.0	appro If usin appro reduc	loater height is : ox. half of the fl ng the stated mo ox. 30 dm ² can ced to approx 1 ers are required	oater height. aximum sheet t be spread per 5 dm² for thick	hickness, a sh floater. The p	neet area of olate area is
ERING EX	AMPLE		SAV r	no A x B						, oily sheets c	and several

SAV 482.70

PERMANENT MAGNETIC BASES Controllable

APPLICATION

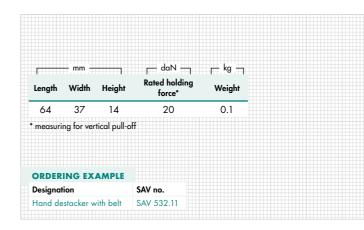
For fixtures, dressers, measuring tripods.

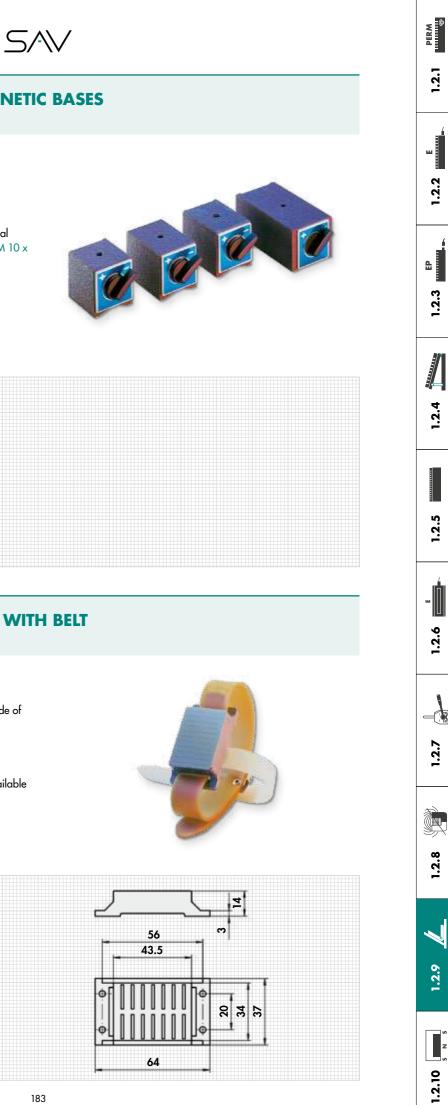
DESIGN

Permanent magnet with ON/OFF switching. Magnetic contact surfaces on underside and rear side. Additional prism-shaped accommodationon the underside. SAV 482.70 - M 10 x 120 has no prism.

r	mr	n		- daN -	r kg -		
Thread	Length	Width	Height	Rated holding force	Weight		
M 8	58	50	55	20	1.0		
M 8	73	50	55	30	1.3		
M 10	73	50	55	30	1.3		
M 8	120	60	52	50	1.8		
M 10	120	60	55	40	2.0		
ORDERIN	IG EXAN	PLE					
Designatio	n	S	AV no th	read - length			
Permanent	magnetic	base S	AV 482.70	D - M 10 - 120			

SAV 532.11


HAND DESTACKER WITH BELT For separating sheets


APPLICATION

For destacking and lifting sheet metal up to 2 mm thickness. For wearing on the right or left palm. Can also be used on the outside of the hand for holding screws/bolts or similar small parts.

DESIGN

The permanent magnet system, which is housed in a sturdy cast housing, guarantees high holding forces. Replacement strap available on request.

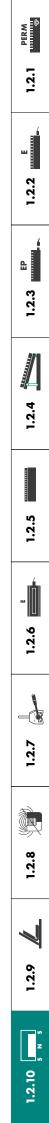
1.2 STANDARD MAGNET SYSTEMS 1.2.10 SMALL MAGNETS

	SAV ART. NO.	DESIGNATION
ARD FERR	ITE HOLDING MAG	NETS
	240.01	Flat pot magnet
	240.02	Flat pot magnet
0-	240.03	Flat pot magnet
	240.08	Flat pot magnet
	240.23	Flat pot magnet
EODYMIU		NETS (NdFeB)
	240.14	Bar magnet
	240.17	Bar magnet
	240.18	Flat pot magnet
	240.19	Bar magnet
d b	240.33	Flat pot magnet
	240.36	Flat pot magnet
	240.38	Flat pot magnet
	240.41	Holding magnet with rubb
Ĉ	240.42	Holding magnet with rubl
AMARIUN		MAGNETS (SmCo)
	240.09	Bar maanet

	SAV ART. NO.	DESIGNATION	COMMENTS	PAGE
D FERRITE		NETS		
	240.01	Flat pot magnet	Hole with counterbore/cylindrical hole	187
	240.02	Flat pot magnet	Stud with internal thread	188
)-	240.03	Flat pot magnet	Without threaded bush	188
	240.08	Flat pot magnet	With threaded bush	189
	240.23	Flat pot magnet	With internal thread	189
DYMIUM H		ETS (NdFeB)		
	240.14	Bar magnet	With internal thread, also available as stainless version RF	190
	240.17	Bar magnet	High-energy magnets, also available as stainless version RF	190
	240.18	Flat pot magnet	Smooth without stud	191
	240.19	Bar magnet	Also with seat	191
	240.33	Flat pot magnet	With threaded bush	192
	240.36	Flat pot magnet	Stud with internal thread	192
	240.38	Flat pot magnet	With hole and counterbore	193
	240.41	Holding magnet with rubber coating	Rectangular with threaded bush	193
	240.42	Holding magnet with rubber coating	With threaded bush	194
ARIUM CO	BALT HOLDING	MAGNETS (SmCo)		
	240.09	Bar magnet	Also with seat	194
	240.10	Flat pot magnet	Smooth without stud	195
	240.34	Flat pot magnet	Hole with counterbore	195
	240.35	Flat pot magnet	Stud with internal thread	196
	ICKEL COBALT H	OLDING MAGNETS (AlNiCo)		
-	240.04	Bar magnet	With internal thread	196
	240.06	Bar magnet	Smooth without stud with seat	197
	240.07	Bar magnet	Smooth without stud	197
			• • • •	


ALUM

	SAV ART. NO.	DESIGNATION	COMMENTS	PAGE
D FERRITE	HOLDING MAGI	NETS		
	240.01	Flat pot magnet	Hole with counterbore/cylindrical hole	187
	240.02	Flat pot magnet	Stud with internal thread	188
)-=	240.03	Flat pot magnet	Without threaded bush	188
	240.08	Flat pot magnet	With threaded bush	189
	240.23	Flat pot magnet	With internal thread	189
DYMIUM H		ETS (NdFeB)		
	240.14	Bar magnet	With internal thread, also available as stainless version RF	190
	240.17	Bar magnet	High-energy magnets, also available as stainless version RF	190
	240.18	Flat pot magnet	Smooth without stud	191
	240.19	Bar magnet	Also with seat	191
	240.33	Flat pot magnet	With threaded bush	192
	240.36	Flat pot magnet	Stud with internal thread	192
	240.38	Flat pot magnet	With hole and counterbore	193
-	240.41	Holding magnet with rubber coating	Rectangular with threaded bush	193
-	240.42	Holding magnet with rubber coating	With threaded bush	194
ARIUM CC	BALT HOLDING	MAGNETS (SmCo)		
	240.09	Bar magnet	Also with seat	194
	240.10	Flat pot magnet	Smooth without stud	195
	240.34	Flat pot magnet	Hole with counterbore	195
	240.35	Flat pot magnet	Stud with internal thread	196
	ICKEL COBALT H	OLDING MAGNETS (AlNiCo)		
•	240.04	Bar magnet	With internal thread	196
	240.06	Bar magnet	Smooth without stud with seat	197
	240.07	Bar magnet	Smooth without stud	197
		nower neonle n	action	


power. people. passion.

CHAPTER SMALL MAGNETS

S/W

	S	N	S
PAG	FES	187	- 211

1.2. STANDARD MAGNET SYSTEMS 1.2.10 SMALL MAGNETS

240.84

240.85

240.88

240.89

240.90

agnets - chucks - fixtur

Office magnets

Office magnets

Office magnets

Office magnets

Office magnets

209

209

210

210

211

	SAV ART. NO.	DESIGNATION	COMMENTS	PAGE
POT, HORSESI	HOE, ROD AND S	TRONG MAGNETS WITH WRINKLE P	AINT FINISH	
	240.11	Pot magnets, wrinkle paint finish	With internal thread	198
	240.12	Flat pot magnets, wrinkle paint finish	Hole with counterbore	198
	240.13	Button magnets, wrinkle paint finish	With through hole	199
	240.15	Pot magnets, wrinkle paint finish	With forcing screw	199
	241.06	Bar magnets, wrinkle paint finish	Made from AlNiCo, rectangular and round	200
	241.14	Horseshoe magnets, wrinkle paint finish	Made from AlNiCo with through hole	200
MAGNETIC CC	DRES			
	240.45	Magnetic cores, AlNiCo	Machining: grinding only	201
\sim	240.46	Magnetic cores, AlNiCo	In freely selectable lengths	201
	240.50	Magnetic cores, SmCo ₅	With high rated holding force	202
	240.55	Magnetic cores, NdFeB	High-energy magnet	203
	240.56	Magnetic cores, NdFeB	With extremely high rated holding force	204
FLEXIBLE MAG	NETS, MAGNETI	C TAPES, LABELS, MAGNETIC FILM		
_	240.70	Flexible permanent magnets	Easy to machine	205
	240.72	Magnetic tapes	Self-adhesive	205
	240.71	Magnetic tapes	Can be cut with scissors	206
¥	240.73	Magnetic film	In different colours	207
	240.74	Magnetic film	Blank brown	207
OFFICE MAGN	IETS			
	240.80	Office magnets	With plastic housing	208
2	240.83	Office magnets	With steel housing	208
	0 / 0 0 /	- "		

S^{A}

SAV 240.01

HOLDING MAGNETS

Hole with 90° counterbore (flat pot magnet)

DESIGN

Shielded system, galvanised surface. Max. service temperature: 200 °C.

FASTENING OPTION Screws from the contact surface. The screws must be made of non-magnetic material.

MAGNET MATERIAL Hard ferrite (oxide 380)

			m	m ——				г— N — ,	F
	Туре	A ±0.2	B ±0.2	с	D	E	Counter- bore	Rated holding force	We
ľ	MH 1 - 16	16	4.5	3.3	7	1.6	90°	14	0.0
	MH 1 - 20	20	6	4.2	9	2.1	90°	27	0.0
	MH 1 - 25	25	7	5.5	11	2.5	90°	36	0.
	MH 1 - 32	32	7	5.5	11	2.5	90°	72	0.0
	MH 1 - 40	40	8	5.5	11	2.5	90°	90	0.0
	ORDERING EX	CAMPLE							
	Designation	SAV no.	- type						
	Holding magnet	SAV 240	0.01 - MH 1	- 40					

SAV 240.01

HOLDING MAGNETS Hole with head counterbore

DESIGN

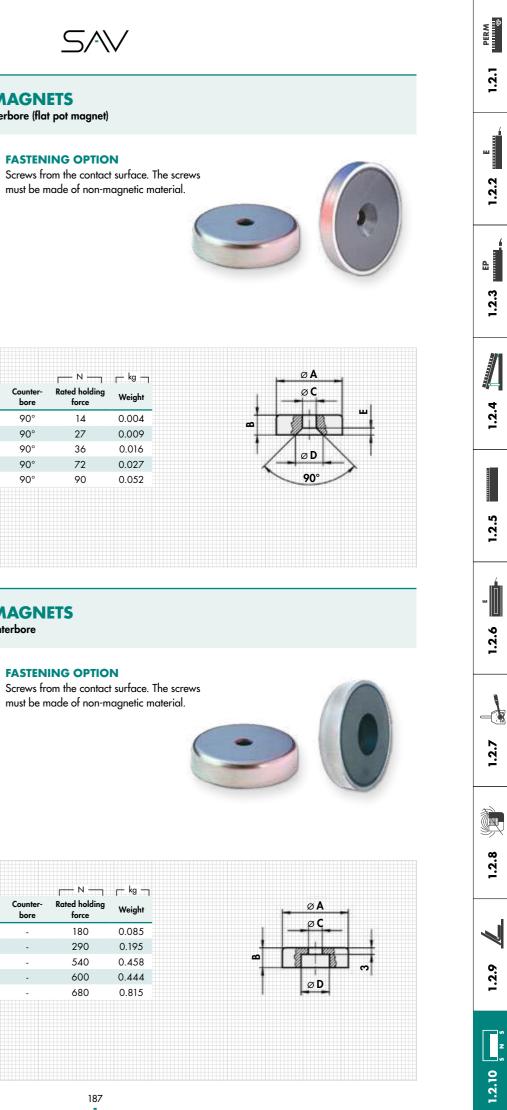
Shielded system, galvanised surface. Max. service temperature: 200 °C.

FASTENING OPTION

must be made of non-magnetic material.

MAGNET MATERIAL Hard ferrite (oxide 380)

	ſ	m	im ———				г <u> </u>
Туре	A ±0.2	B ±0.2	с	D	E	Counter- bore	Rated holding force
MH 1 - 50	50	10	8.5	22	-	-	180
MH 1 - 63	63	14	6.5	24	-	-	290
MH 1 - 80	80	18	6.5	11.5	-	-	540
MH 1 - 83	83	18	10.5	32	-	-	600
MH 1 - 100	100	22	10.5	34	-	-	680
ORDERING E	XAMPLE						
Designation	SAV no.	- type					
Holding magne	t SAV 240	0.01 - MH 1	- 50				


With steel casing

With plastic casing

Suitable for printing

Suitable for printing

With raised pattern

SAV 240.02

HOLDING MAGNETS

Stud with internal thread (flat pot magnet)

DESIGN

Flat pot magnet with threaded bush. Shielded system, galvanised surface. Version (RF) available for sizes with stated holding force. Max. service temperature: 200 °C.

Hard ferrite (oxide 380) **FASTENING OPTION** Screws

MAGNET MATERIAL

Ц

øΑ

-

Туре	A ±0.2	B ±0.2	С	D ± 0.2	E ±0.2	F ±0.2	Rated holding force	Weight	RF Rated holding force	RF C	
MH 2 - 01	10	4.5	M 3	6	11.5	7	4	0.003	-	-	
MH 2 - 02	13	4.5	M 3	6	11.5	7	10	0.004	-	-	
MH 2 - 03	16	4.5	M 3	6	11.5	7	18	0.006	-	-	
MH 2 - 04	20	6	M 3	6	13	7	30	0.011	-	-	
MH 2 - 05	25	7	M 4	8	15	8	40	0.020	32	M 5	•
MH 2 - 06	32	7	M 4	8	15	8	80	0.031	64	M 5	ш.
MH 2 - 36	36	7.7	M 4	8	16	8	100	0.042	-	-	1
MH 2 - 07	40	8	M 5	10	18	10	125	0.059	100	M 5	1
MH 2 - 47	47	9	M 6	12	21	12	180	0.091	-	-	
MH 2 - 08	50	10	M 6	12	22	12	220	0.110	175	M 5	
MH 2 - 57	57	10.5	Μ6	12	22.5	12	280	0.153	-	-	
MH 2 - 09	63	14	M 8	15	30	16	350	0.245	280	M 5	
MH 2 - 10	80	18	M 10	20	34	16	600	0.499	-	-	
MH 2 - 11	100	22	M 12	22	43	21	900	0.956	-	-	
MH 2 - 12	125	26	M 14	25	50	20	1300	1.720	_	-	

SAV no. - type - stainless version Designation Holding magnet SAV 240.02 - MH 2 - 12 - RF

SAV 240.03

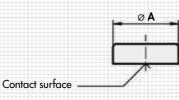
HOLDING MAGNETS Flat pot magnet without threaded bush

MAGNET MATERIAL

Hard ferrite (oxide 380)

FASTENING OPTION

Pressing, glueing.


DESIGN

Flat pot magnet without threaded bush. Shielded system, galvanised surface. Max. service temperature: 200 °C.

Holding magnet SAV 240.03 - MH 3 - 36

	m	m ————————————————————————————————————	N	г ^k g ¬
Туре	A ±0.2	B ±0.2	Rated holding force	Weight
MH 3 - 01	10	4.5	4	0.002
MH 3 - 02	13	4.5	10	0.003
MH 3 - 03	16	4.5	20	0.005
MH 3 - 04	20	6	30	0.010
MH 3 - 05	25	7	40	0.018
MH 3 - 06	32	7	80	0.029
MH 3 - 36	36	7.7	100	0.040
MH 3 - 07	40	8	110	0.055
MH 3 - 47	47	9	180	0.084
MH 3 - 08	50	10	200	0.100
MH 3 - 57	57	10.5	280	0.140
MH 3 - 09	63	14	320	0.230
MH 3 - 10	80	18	600	0.468
MH 3 - 11	100	22	900	0.915
MH 3 - 12	125	26	1300	1.680
ORDERING E	XAMPLE			
Designation	SAV no.	- type		

NOTE

The following applies to all holding magnets type MH 3: Hairline cracks on the contact surface of the integrated magnetic material and a central offset are unavoidable due to manufacturing. This does not affect the function in any way.

SAV 240.08

HOLDING MAGNETS

With threaded stud

DESIGN

FASTENING OPTION

Screwing in

 S^{A}

Flat pot magnet with threaded stud, galvanised surface, shielded system. Max. service temperature: 200 °C.

MAGNET MATERIAL Hard ferrite (oxide 380)

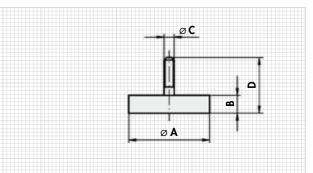
		mm -			г N	r— kg —
Туре	A±0.2	B ±0.2	с	D	Rated holding force	Weight
MH 8 - 10	10	4.5	M 3	11.5	4	0.002
MH 8 - 13	13	4.5	M 3	11.5	10	0.003
MH 8 - 16 - 1	16	4.5	M 3	11.5	18	0.005
MH 8 - 16 - 2	16	4.5	M 4	11.5	18	0.005
MH 8 - 20 - 1	20	6	M 3	12	30	0.01
MH 8 - 20 - 2	20	6	M 6	36	30	0.015
MH 8 - 25 - 1	25	7	M 4	15	40	0.019
MH 8 - 25 - 2	25	7	M 5	22	40	0.02
MH 8 - 25 - 3	25	7	M 6	27	40	0.022
MH 8 - 32 - 1	32	7	M 4	15	80	0.03
MH 8 - 32 - 3	32	7	M 6	19	80	0.031
MH 8 - 32 - 4	32	7	M 8	17	80	0.032
MH 8 - 47	47	9	M 6	17	180	0.085
MH 8 - 57 - 2	57	10.5	M 6	18.5	280	0.146
MH 8 - 63	63	14	M 6	29	350	0.233

SAV 240.23

HOLDING MAGNETS With internal thread

DESIGN Shielded system, galvanised surface.

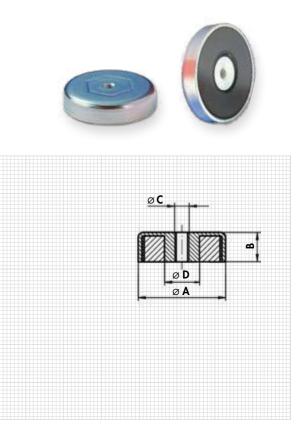
FASTENING OPTION

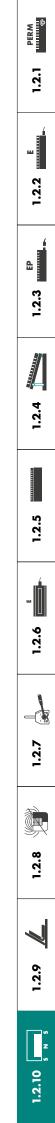

Max. service temperature: 200 °C.

Screws

MAGNET MATERIAL Hard ferrite (oxide 380)

Туре	A ±0.2	B ± 0.2	с	D	r kg → Weight	Rated holding
MH 23 - 25 - 07	25	7	M 4	5.2	0.018	36
MH 23 - 32 - 07	32	7	M 4	5.2	0.029	75
MH 23 - 40 - 08	40	8	M 4	5.2	0.053	90
MH 23 - 50 - 06	50	10	M 6	12	0.094	170
MH 23 - 50 - 08	50	10	M 8	12	0.094	170
MH 23 - 63 - 14	63	14	M 8	13	0.206	290
MH 23 - 80 - 08	80	18	M 8	14.5	0.472	550
MH 23 - 80 - 10	80	18	M 10	14.5	0.466	550
Designation SA	V no type					
Holding magnet SA		NH 23 - 40	- 08			





NOTE

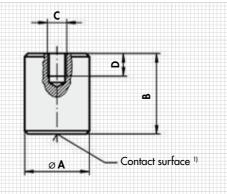
Flat pot magnet with threaded stud, amplified version, see SAV 240.33 - MH 33

ORDERING EXAMPLE Designation SAV no. - type Holding magnet SAV 240.08 - MH 8 - 32 - 1

HOLDING MAGNETS

With internal thread (bar magnet)

Screws


DESIGN

Bar magnet, smooth without fitting tolerance. NdFeB magnets have an up to approx. 50 % greater holding force than SmCo flat pot magnets. Shielded system. Seawater-resistant version (RF) available. Max. service temperature: 80 °C.

MAGNET MATERIAL NdFeB **FASTENING OPTION**

		- mm -		7	г— N —]	Г N — 1	⊢ kg ¬
Туре	A ±0.2	B ±0.2	с	D	Rated holding force	RF Holding force	Weight
MH 14 - 06	6	20	M 3	5	6	1	0.003
MH 14 - 08	8	20	M 3	5	12	4	0.006
MH 14 - 10	10	20	M 4	7	24	8	0.010
MH 14 - 13	13	20	M 4	7	60	16	0.016
MH 14 - 16	16	20	M 4	7	90	18	0.025
MH 14 - 20	20	25	M 6	9	135	32	0.055
MH 14 - 25	25	35	M 6	9	190	73	0.135
MH 14 - 32	32	40	M 8	12	340	115	0.230

NOTE

¹⁾ In case of profiling or removing the contact surface, no more than 2 mm may be removed, as otherwise the holding force decreases greatly.

SAV 240.17

Designation SAV no. - type - stainless version

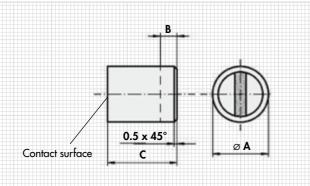
Holding magnet SAV 240.14 - MH 14 - 32 - RF

ORDERING EXAMPLE

HOLDING MAGNETS With h6 seat (bar magnet)

DESIGN

Brass magnet housing with integrated sandwich magnet system. Max. service temperature: 80 °C.


FASTENING OPTION Pressing, glueing.

MAGNET MATERIAL

NdFeB

	 	mm -			г N	kg –
Туре	\mathbf{A}_{h6}	B ¹⁾	с	D ²⁾	Rated holding force	Weight
MH 17 - 01	6	10	20	1.5	10	0.004
MH 17 - 02	8	10	20	1.5	22	0.008
MH 17 - 03	10	8	20	2	45	0.012
MH 17 - 04	13	6	20	2.5	70	0.020
MH 17 - 05	16	2	20	3	150	0.032
MH 17 - 06	20	5	25	4	300	0.060
MH 17 - 07	25	7	35	5	500	0.140
MH 17 - 08	32	5	40	6	720	0.265
ORDERING EX						
Designation	SAV no ty	•				
Holding magnet	SAV 240.17	- MH 17 -	04			

NOTE

¹⁾ Bar magnets can be shortened at the rear end by dimension B without reducing the holding force. ²⁾ In case of changes to the contact surface, no more than dimension B may be removed, as otherwise the holding force decreases greatly.

SAV 240.18

HOLDING MAGNETS

High-energy magnets (flat pot magnets)

DESIGN Max. service temperature: 80 °C

FASTENING OPTION Pressing, glueing, casting

MAGNET MATERIAL Neodymium iron boron (NdFeB)

	г m	mj	г— N — ј	kg
Туре	A ±0.15	B ±0.15	Rated holding force	Weight
MH 18 - 01	6	4.5	5	0.001
MH 18 - 02	8	4.5	13	0.002
MH 18 - 03	10	4.5	25	0.003
MH 18 - 04	13	4.5	60	0.005
MH 18 - 05	16	4.5	95	0.007
MH 18 - 06	20	6	140	0.015
MH 18 - 07	25	7	200	0.022
MH 18 - 08	32	7	350	0.040

ORDERING EXAMPLE Designation SAV no. - type

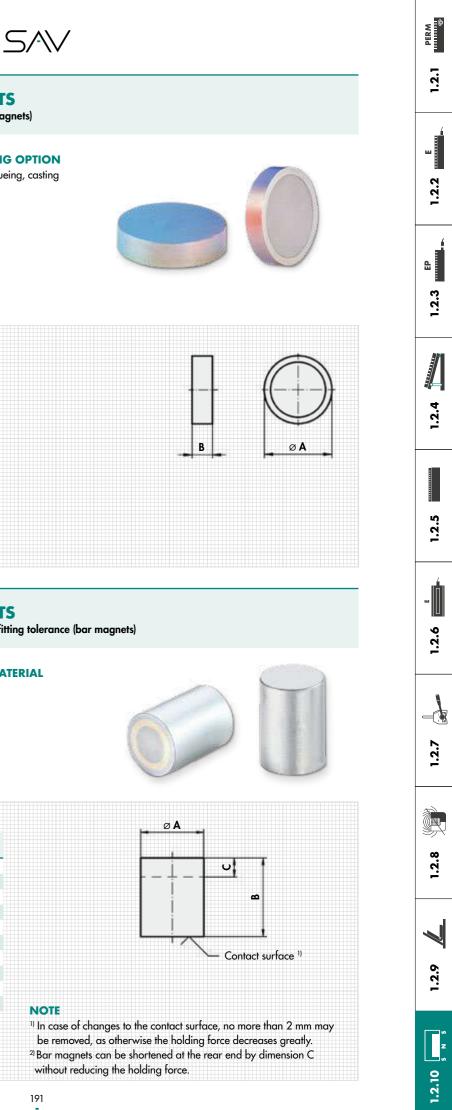
Holding magnet SAV 240.18 - MH 18 - 05

SAV 240.19

HOLDING MAGNETS

High-energy magnets, also with fitting tolerance (bar magnets)

NdFeB


DESIGN

MAGNET MATERIAL

Bar magnet, smooth without fitting tolerance. Shielded system. Version with fitting tolerance h6 (P) available. Attach P when ordering.

Max. service temperature: 80 °C.

				N	l a
Туре	A ± 0.2	B ± 0.2	C ²⁾	Rated holding force	Weight
MH 19 - 001	4	10	5	2.5	0.001
MH 19 - 002	5	10	5	4.5	0.003
MH 19 - 01	6	10	5	6	0.004
MH 19 - 02	8	12	7	12	0.007
MH 19 - 03	10	16	11	24	0.011
MH 19 - 04	13	18	13	60	0.019
MH 19 - 05	16	20	15	90	0.029
MH 19 - 06	20	25	18	135	0.061
MH 19 - 07	25	30	22	190	0.140
MH 19 - 08	32	35	27	340	0.240
ORDERING EX					
Designation	SAV no ty	/pe - version	1		
Holding magnet	SAV 240.19	- MH 19-	08 - P		

HOLDING MAGNETS

High-energy magnets with threaded stud

DESIGN

MAGNET MATERIAL NdFeB

Flat pot magnet with threaded stud, galvanised surface, shielded system. Max. service temperature: 80 °C.

FASTENING OPTION Screwing in

Δ

6

øΑ

			ım —			1
Туре	Α	В	С	D	Rated holding force	Weight
VH 33 - 10	10	4.5	M 4	12.5	25	0.003
MH 33 - 13	13	4.5	M 5	12.5	60	0.005
MH 33 - 16	16	4.5	M 6	12.5	95	0.008
MH 33 - 20	20	6	M 6	16	140	0.016
MH 33 - 25	25	7	M 6	17	200	0.025
MH 33 - 32	32	7	M 6	17	350	0.048
RDERING EX	AMPL	E				
esignation	SAV n	o type				

SAV 240.36

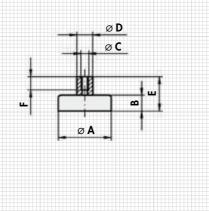
HOLDING MAGNETS

High-energy magnets, stud with internal thread (flat pot magnet)

FASTENING OPTION

Screwing in

DESIGN


Shielded system, galvanised surface. Max. service temperature: 80 °C.

MAGNET MATERIAL

NdFeB

			mm				г N	⊢ kg ⊣
Туре	A ±0.2	B ±0.2	С	D	E	F	Rated holding force	Weight
MH 36 - 06	6	4.5	M 3	6	11.5	7	5	0.002
MH 36 - 08	8	4.5	M 3	6	11.5	7	13	0.003
MH 36 - 10	10	4.5	M 3	6	11.5	7	25	0.004
MH 36 - 13	13	4.5	M 3	6	11.5	7	60	0.005
MH 36 - 16	16	4.5	M 4	6	11.5	7	95	0.007
MH 36 - 20	20	6	M 4	8	13	7	140	0.016
MH 36 - 25	25	7	M 4	8	14	7	200	0.027
MH 36 - 32	32	7	M 5	10	15.5	8.5	350	0.045
ORDERING EX								
Designation	SAV no t	уре						
Holding magnet	SAV 240.3	6 - MH 36	5 - 32					

SAV 240.38

HOLDING MAGNETS

High-energy magnets, hole and counterbore

DESIGN

MAGNET MATERIAL NdFeB

Shielded system, galvanised surface.

Anisotropic magnetising.	
Max. service temperature: 80 °C.	

With hole and	counterb	ore:			Г N1	⊢ kg ⊣
Туре	A ±0.2	B ±0.2	с	D	Rated holding force	⊢ ^k g ⊣ Weight
MH 38 - 216	16	4.5	3.5	6.6	75	0.006
MH 38 - 220	20	6	4.5	9	105	0.013
MH 38 - 225	25	7	4.5	9	160	0.024
MH 38 - 232	32	7	5.5	11	310	0.039
MH 38 - 240	40	8	5.5	10.6	500	0.073
With internal t	hread:					
		mm			г N]	⊢ kg ¬
Туре	A ±0.2	B ±0.2	с	D	Rated holding force	⊢ ^k g ⊣ Weight
Туре МН 38 - 332	A ± 0.2 32		с м 5	D 5.5		
		B ±0.2	-		Rated holding force	Weight
MH 38 - 332	32	B ±0.2 7	M 5	5.5	Rated holding force 330	Weight 0.04
MH 38 - 332 MH 38 - 340	32 40	B ± 0.2 7 8	M 5 M 5	5.5 10.5	Rated holding force 330 500	Weight 0.04 0.074

ORDERING EXAMPLE Designation

SAV no. - type Holding magnet SAV 240.38 - MH 38 - 332

SAV 240.41

HOLDING MAGNETS WITH RUBBER COATING With threaded bush

NdFeB

Screws

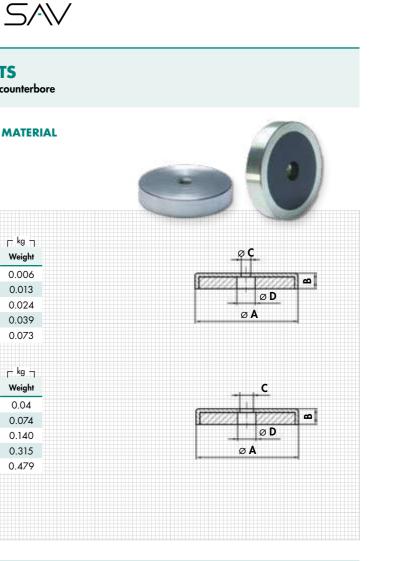
painted steel surfaces.

MAGNET MATERIAL

FASTENING OPTION

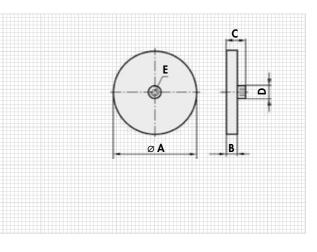
DESIGN

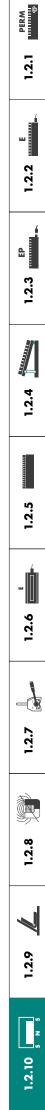
Rubber-coated holding magnets, disc-shaped. Rectangular version with 1 or 2 threaded bushes. The Santoprene® rubber coating has a very long useful life and is sufficiently resistant to all weather conditions and UV radiation.


Max. service temperature: 60 °C.

APPLICATION The rubber-coated holding magnets are ideal for attaching items such as advertising displays, safety lamps on car roofs, but also

			— mm —			г— N —]	r kg m
Туре	Α	В	с	D	E	Rated holding force	Weight
MG 12	12	7	14.8	8	M 4	10	0.006
MG 22	22	6	11.5	8	M 4	50	0.013
MG 31	31	6	11.5	8	M 4	75	0.022
MG 43	43	6	10.5	8	M 4	85	0.030
MG 66	66	8.5	15	10	M 5	180	0.105
MG 88	88	8.5	17	12	M 8	420	0.192
ORDERING E	XAMP	LE					
)esignation	SAV -	o - type					


SAV no. - type Holding magnet SAV 240.41 - MG 12


192

for scratch-free attaching of signs or sample parts to mirror-polished, chrome-plated or

for scratch-free attaching of signs or sample

parts to mirror-polished, chrome-plated or

painted steel surfaces.

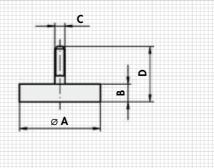
MAGNET MATERIAL

FASTENING OPTION

NdFeB

HOLDING MAGNETS WITH RUBBER COATING SAV 240.42 With threaded stud

DESIGN


Rubber-coated holding magnets, disc-shaped, with threaded studs on the rear. The Santoprene[©] rubber coating has a very long useful life and is sufficiently resistant to all weather conditions and UV radiation. Max. service temperature: 60 °C.

APPLICATION

ideal for attaching items such as advertising displays, safety lamps on car roofs, but also

Screws The rubber-coated holding magnets are

Туре	A	B	^{mm}	D	Rated holding force	Weight
MG22-M4x6	22	6	M 4x6	8	50	0.011
MG43-M6x15	22	6	M 6x15	8	85	0.032
MG66-M8x15	66	8.5	M 8x15	10	180	0.107
MG88-M8x15	88	8.5	M 8x15	12	420	0.193

Designation SAV no. - type Holding magnet SAV 240.42 - MG 22-M4x6

ORDERING EXAMPLE

SAV 240.09

HOLDING MAGNETS With h6 seat (bar magnet)

DESIGN

magnet system.

MAGNET MATERIAL Brass magnet housing with integrated sandwich $SmCo_5$

FASTENING OPTION Max. service temperature: 200 °C. Pressing, glueing.

	l l l l l l l l l l l l l l l l l l l		nm		г N	⊢ kg ⊣
Туре	$\mathbf{A}_{\mathbf{h6}}$	B ¹⁾	с	D ²⁾	Rated holding force	Weight
MH 9 - 01	6	10	20	1.5	8	0.004
MH 9 - 02	8	10	20	1.5	22	0.008
MH 9 - 03	10	8	20	2	40	0.012
MH 9 - 04	13	6	20	2.5	60	0.020
MH 9 - 05	16	2	20	3	125	0.032
MH 9 - 06	20	5	25	4	230	0.060
MH 9 - 07	25	7	35	5	400	0.140
MH 9 - 08	32	5	40	6	600	0.265
ORDERING EX						
acianation	SAV no h					

SAV no. - type Holding magnet SAV 240.09 - MH 9 - 04

0.5 x 45° Ø Ahé Contact surface С

NOTE

¹⁾ Bar magnets can be shortened at the rear end by dimension B without reducing the holding force.

²⁾ In case of changes to the contact surface, no more than dimension B may be removed, as otherwise the holding force decreases greatly.

Max. service temperature: 200 °C.

HOLDING MAGNETS

High-energy magnets (flat pot magnets)

DESIGN

(shielded).

MAGNET MATERIAL SmCo5 magnets have a 3 to 5 times higher $SmCo_5$ holding force compared to conventional flat

pot magnets. The magnets have a steel casing **FASTENING OPTION** Pressing, glueing, casting

	m	ım ——	г N	r− kg –
Туре	A ±0.15	B ±0.15	Rated holding force	Weight
MH 10 - 01	6	4.5	5	0.001
MH 10 - 02	8	4.5	11	0.002
MH 10 - 03	10	4.5	20	0.003
MH 10 - 04	13	4.5	40	0.005
MH 10 - 05	16	4.5	60	0.007
MH 10 - 06	20	6	90	0.015
MH 10 - 07	25	7	150	0.027
MH 10 - 08	32	7	220	0.044

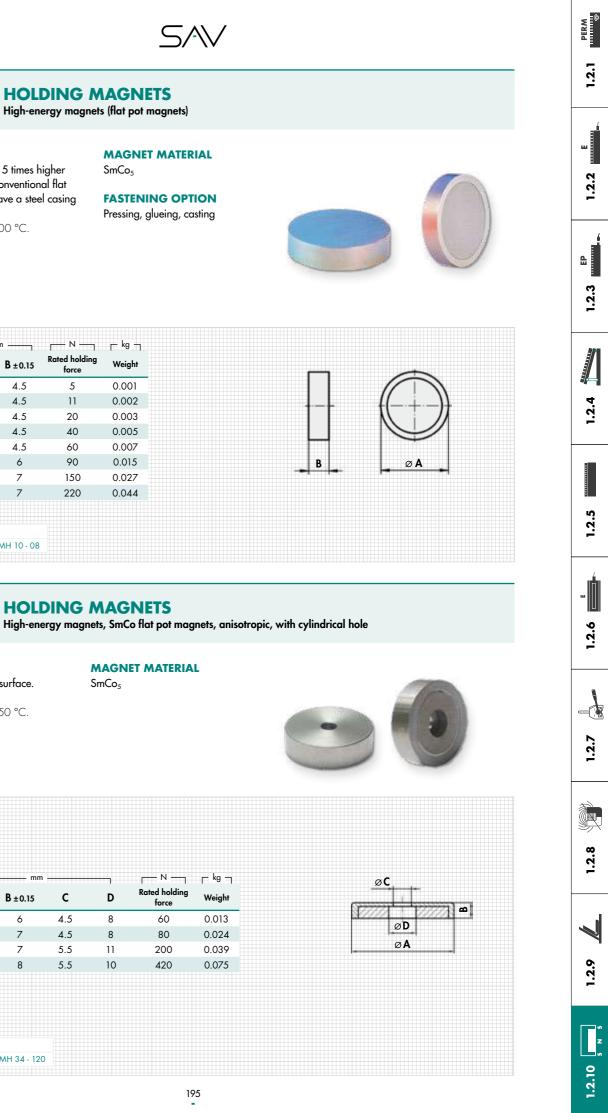
ORDERING EXAMPLE SAV no. - type Designation

Holding magnet SAV 240.10 - MH 10 - 08

SAV 240.34

HOLDING MAGNETS

DESIGN Shielded system, galvanised surface.


MAGNET MATERIAL

$SmCo_5$

Anisotropic magnetising. Max. service temperature: 350 °C.

		mm		1	Г N —]	⊢ kg
Туре	A ±0.15	B ±0.15	С	D	Rated holding force	Weigl
MH 34 - 120	20	6	4.5	8	60	0.01
MH 34 - 125	25	7	4.5	8	80	0.02
MH 34 - 132	32	7	5.5	11	200	0.03
MH 34 - 140	40	8	5.5	10	420	0.07
ORDERING EX						
Designation	SAV no type	•				
Holding magnet	SAV 240.34 -	MH 34 - 120				

 S^{A}

MAGNET MATERIAL

Stud with internal thread (flat pot magnet), extremely high rated holding force

DESIGN

SmCo₅

FASTENING OPTION

HOLDING MAGNETS

Screws

Shielded system, galvanised surface. Max. service temperature: 200 °C.

ØD øC

ØA

	r		— mm				N	r kg n
Туре	A ±0.2	B ±0.2	с	D	E	F	Rated holding force	Weight
MH 35 - 06	6	4.5	M 3	6	11.5	7	5	0.002
MH 35 - 08	8	4.5	M 3	6	11.5	7	11	0.002
MH 35 - 10	10	4.5	M 3	6	11.5	7	20	0.003
MH 35 - 13	13	4.5	M 3	6	11.5	7	40	0.005
MH 35 - 16	16	4.5	M 4	8	11.5	7	60	0.008
MH 35 - 20	20	6	M 4	8	13	7	90	0.016
MH 35 - 25	25	7	M 4	8	14	7	150	0.022
MH 35 - 32	32	7	M 5	10	15.5	8.5	220	0.040
ORDERING EX								
Designation	SAV no t	уре						
Holding magnet	SAV 240.3	5 - MH 35	5 - 20					

SAV 240.04

HOLDING MAGNETS With internal thread (bar magnet)

С

M 3

M 3

M 4

M 4

M 4

Μ6

M 6

M 8

D

5

5

7

7

5

7

9

9

DESIGN

Bar magnet, smooth without fitting tolerance. Shielded system. Max. service temperature: 450 °C.

A±0.2

6

8

10

13

16

20

25

32

B±0.2

20

20

20

20

20

25

35

40

MAGNET MATERIAL

Туре

MH 11 - 06

MH 11 - 08

MH 11 - 10

MH 11 - 13

MH 11 - 16

MH 11 - 20

MH 11 - 25

MH 11 - 32

ORDERING EXAMPLE

Designation SAV no. - type

Holding magnet SAV 240.04 - MH 11 - 32

AlNiCo 500

Screws NOTE

FASTENING OPTION

Amplified version, see SAV 240.14 NdFeB. For use in injection moulds with high injection pressure please contact us.

Weight

0.003

0.006

0.010

0.016

0.025

0.055

0.135

0.230

Rated holding

force

17

4

8.5

12

20

45

100

190

-+ ^C -	
	B±0.2

NOTE ¹⁾ In case of changes to the contact surface, no more than 2 mm may be removed, as otherwise the holding force decreases greatly.

SAV 240.06

MAGNET MATERIAL

HOLDING MAGNETS

Bar magnets without fitting tolerance

DESIGN

AlNiCo 500

FASTENING OPTION Bar magnet, smooth without fitting tolerance. Pressing, shrinking, glueing

Shielded system. Max. service temperature: 450 °C.

NOTE

For use in injection moulds with high injection pressure please contact us.

	II F	- mm	- 1	г— N —]	⊢ kg ⊣
Туре	A ±0.2	B ±0.2	C ²⁾	Rated holding force	Weight
MH 6 - 01	6	20	12	1.7	0.004
MH 6 - 02	8	20	11	4	0.007
MH 6 - 03	10	20	10	8.5	0.011
MH 6 - 04	13	20	8	12	0.019
MH 6 - 05	16	20	6	20	0.029
MH 6 - 06	20	25	5	45	0.061
MH 6 - 07	25	35	13	100	0.140
MH 6 - 08	32	40	9	190	0.240
MH 6 - 09	40	50	10	240	0.500
MH 6 - 10	50	60	10	420	0.900
MH 6 - 11	63	65	10	660	1.500
ORDERING EX					
Designation	SAV no ty	/pe			
Holding magnet	SAV 240.0	6 - MH 6 - 0	8		

SAV 240.07

HOLDING MAGNETS

Bar magnets with fitting tolerance

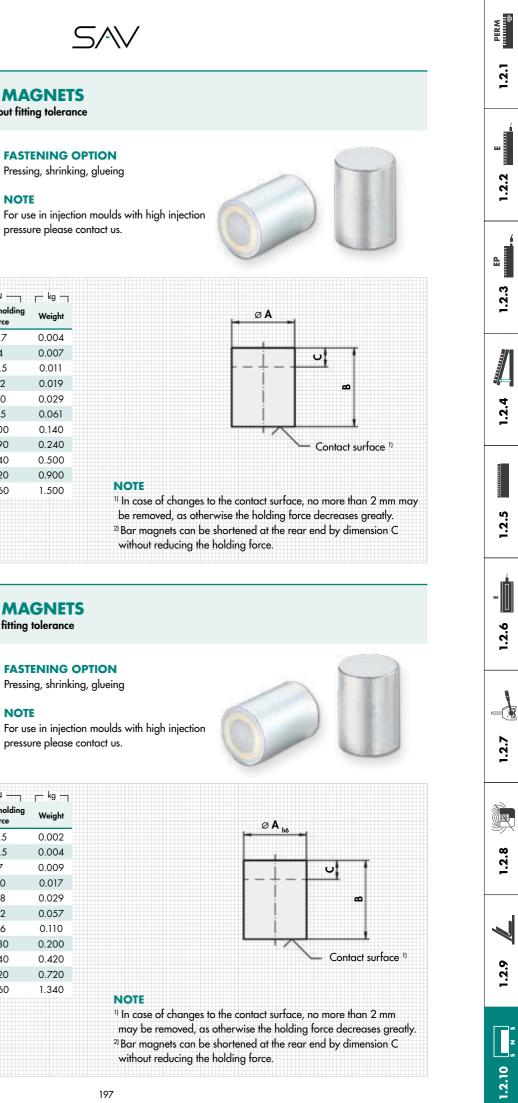
DESIGN

FASTENING OPTION Pressing, shrinking, glueing

Bar magnet, smooth with fitting tolerance h6 in the diameter. Shielded system. Max. service temperature: 450 °C.

NOTE

pressure please contact us.


MAGNET MATERIA
AlNiCo 500

AL

		- mm		N	⊢ kg –
Туре	A hó	B ±0.2	C ²⁾	Rated holding force	Weight
MH 7 - 01	6	10	2	1.5	0.002
MH 7 - 02	8	12	3	3.5	0.004
MH 7 - 03	10	16	6	7	0.009
MH 7 - 04	13	18	7	10	0.017
MH 7 - 05	16	20	5	18	0.029
MH 7 - 06	20	25	6	42	0.057
MH 7 - 07	25	30	5	96	0.110
MH 7 - 08	32	35	3	180	0.200
MH 7 - 09	40	45	5	240	0.420
MH 7 - 10	50	50	2	420	0.720
MH 7 - 11	63	60	5	660	1.340
ORDERING EX					
Designation	SAV no ty				
Holding magnet	SAV 240.0	7 - MH 7 - 0	08		

197

DESIGN

Strong magnet with steel casing and threaded blind hole. Surface with wrinkle paint finish, red. Max. service temperature:

- 100 °C for paint
- 400 °C for magnet material

FASTENING OPTION Screws

AlNiCo

MAGNET MATERIAL

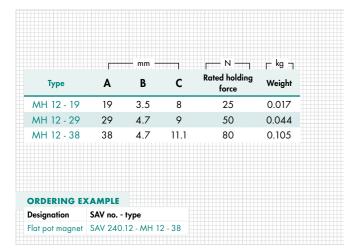
	l l l l l l l l l l l l l l l l l l l	mm		Г N	г kg - т
Туре	Α	В	с	Rated holding force	Weight
MH 11 - 1	2 12.7	M 4	16	20	0.016
MH 11 - 1	7 17	M 6	16	20	0.025
MH 11 - 2	21	M 6	19	28	0.050
MH 11 - 2	7 27	M 6	25.4	68	0.110
MH 11 - 3	5 35	M 6	30	150	0.220
MH 11 - 35	5-2 35	M 6	20	100	0.160
MH 11 - 4	5 45	M 8	30	280	0.380
MH 11 - 5	0 50	M 8	40	350	0.630
ORDERING	EXAMPLE				
Designation	SAV no typ	be			
Pot magnet	SAV 240.11	- MH 11 - d	55		

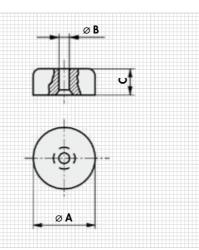
POT MAGNETS

With internal thread

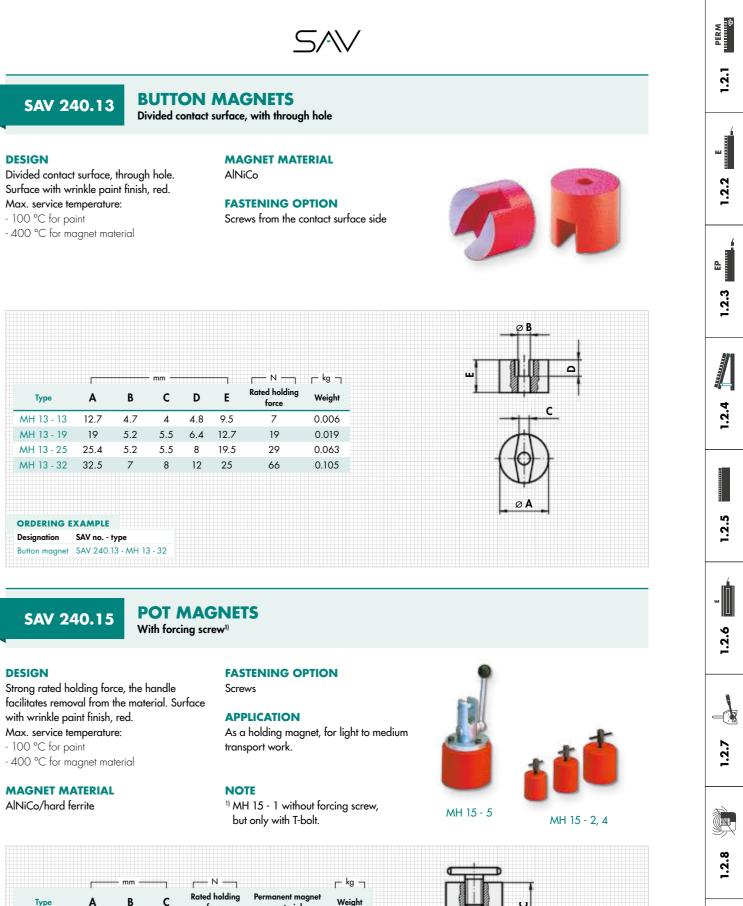
FLAT POT MAGNETS SAV 240.12 Hole with counterbore

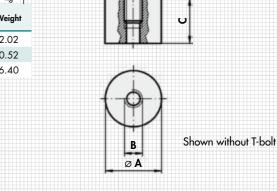
DESIGN


Strong magnet with hole and counterbore. Surface with wrinkle paint finish, red. Max. service temperature: - 100 °C for paint - 400 °C for magnet material



FASTENING OPTION Screws


øΑ



SAV 240.13

Max. service temperature: - 100 °C for paint

		— mm —		Г N		ſ
Туре	Α	В	С	Rated holding force	Permanent magnet material	
MH 15 - 2	70	M 8	63	650	AlNiCo	
MH 15 - 4	44	M 8	44	200	AlNiCo	
MH 15 - 5	102	M 8	75	1700	AlNiCo	
ORDERING	EXAMPLE					
Designation	SAV no typ	he				

Ź 1.2.9 1.2.10

SAV 241.06

DESIGN

Surface with wrinkle paint finish, red, unshielded.

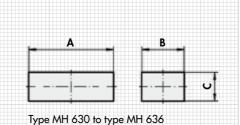
Max. service temperature: - 100 °C for paint

- 400 °C for magnet material

MAGNET MATERIAL

AlNiCo 500

Pairs, rectangular and round cross-section


BAR MAGNETS

FASTENING OPTION Pressing, glueing.

NOTE Supplied in pairs. Machining: grinding only.

Type A B C MH 630 20 10 5 MH 631 60 15 5 MH 632 50 15 10 MH 633 75 15 10 MH 634 101 15 10	r kg ⊤ Weight 0.005 0.055 0.063	туре МН 620 МН 621	A 10	m	
MH 630 20 10 5 MH 631 60 15 5 MH 632 50 15 10 MH 633 75 15 10	0.005 0.055	MH 620	10	_	Weigh
MH 631 60 15 5 MH 632 50 15 10 MH 633 75 15 10	0.055			4	0.001
MH 632 50 15 10 MH 633 75 15 10		MH 621	10		0.001
MH 633 75 15 10	0.063		10	5	0.001
	0.000	MH 622	10	6	0.001
MH 634 101 15 10	0.118	MH 623	20	5	0.002
	0.174	MH 624	20	6	0.003
MH 635 40 12.5 5	0.030	MH 625	24	8	0.007
MH 636 60 12.5 5	0.036	MH 626	30	10	0.018

Type MH 620 to type MH 626

SAV 241.14

Designation SAV no. - type

Bar magnet SAV 241.06 - MH 635

STRONG MAGNETS U-shaped with fastening holes

MAGNET MATERIAL

FASTENING OPTION

AlNiCo, cast

Screws, glueing

DESIGN

U-shaped magnet with high rated holding force, through hole for fastening from type MH 14-17. Contact surfaces polished.

To prevent demagnetising, an iron plate must be provided across both poles. Surface with wrinkle paint finish, red.

Max. service temperature:

- 100 °C for paint

- 400 °C for magnet material

	r			- mm —				N	⊢ kg ⊣
Туре	Α	В	с	D	E	F	G	Rated holding force	Weight
MH 14 - 05	21.4	11.3	8	-	7.8	6.5	3.3	20	0.012
MH 14 - 10	28.5	25.3	7.4	-	8	7	15	35	0.026
MH 14 - 17	22	22	25	7	7	8	9	45	0.010
MH 14 - 20	30.4	20.3	20.3	5	8	15	11	40	0.063
MH 14 - 25	38.1	25.4	25.4	5	9.5	19.1	14.5	90	0.133
MH 14 - 29	44.4	29.5	28.6	5.8	11.1	22.2	17	120	0.197
MH 14 - 35	58	35	44	8	11	28	23	230	0.500
MH 14 - 39	60	39.2	61.5	7	14	32	26	250	0.830
MH 14 - 41	70	41	57	8	15	40	26	320	1.000
MH 14 - 54	78	54	82	10.5	15	48	36	470	2.200
ORDERING E	XAMPLE								
Designation	SAV no	type							
Strong magnet	SAV 241.	.14 - MH	14 - 29						

Δ F

SAV 240.45

MAGNETIC CORES

Made of AlNiCo 500

DESIGN

Improved magnetic capacity through lengthwise alignment of the crystals. Unshielded magnetic system. Circumference rough, face side polished. Max. service temperature: 400 °C.

MAGNET MATERIAL AlNiCo 500

FASTENING OPTION Glueing, pressing

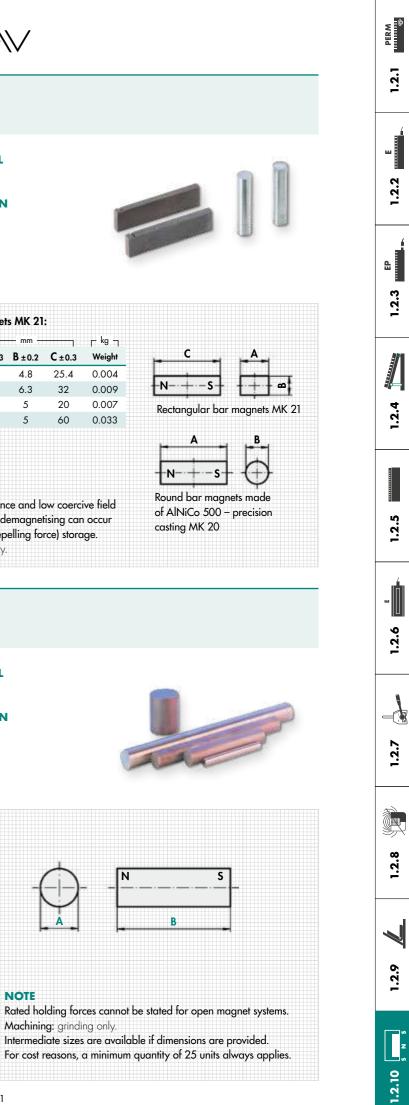
Round bar m	agnets MK	20:		Rectangular ba	r magnel
	<u>г</u> т	m —	г kg רן		r
Туре	A ±0.2	B ±0.2	Weight	Туре	A ±0.3
MK 20 - 15	3	15	0.001	MK 21 - 25	4.8
MK 20 - 20 -	4 4	20	0.002	MK 21 - 32	6.3
MK 20 - 20 -	5 5	20	0.003	MK 21 - 20	10
MK 20 - 25	6	25	0.005	MK 21 - 60	15
MK 20 - 32	8	32	0.012		
MK 20 - 45	10	45	0.026		
MK 20 - 60	15	60	0.078		
MK 20 - 120	0 20	120	0.150	NOTE	
DRDERING E Designation Magnetic core	SAV no type		60	Due to the high strength of the A in case of same Machining: grin	AlNiCo, d -pole (rep

SAV 240.46

MAGNETIC CORES

Made of AlNiCo 500 in specific lengths

DESIGN Polished face sides, unshielded magnet.


MAGNET MATERIAL AlNiCo 500

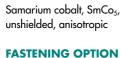
Max. service temperature: 450 °C. **FASTENING OPTION**

Pressing, glueing.

		- mm
	A ±0.2	B ± 0.2 Standard
3	3	10 / 12
4	4	10 / 16 / 20
5	5	10 / 20 / 30
6	6	15 / 20 / 24 / 30
8	8	10 / 25
0	10	20 / 30 / 40
2	12	40
5	15	30 / 60
0	20	40 / 60 / 80
4	34	80
XAN	NPLE	
SAV	no type	x length
SAV	240.46 -	MK 30 - 12 x 50

 S^{A}

MAGNETIC CORES MADE OF SmCo₅


With high rated holding force

_ . . .

DESIGN

The holding magnets are manufactured by sintering. The magnets are hard and brittle and can only be machined while demagnetised.

Max. service temperature: 200 °C Remanence: approx. 850 mT to 930 mT

MAGNET MATERIAL

Glueing, pressing

DESIGN
Neodymium iron boron is t
magnet material available.

SAV 240.55

samarium cobalt, the energy product is approx. 40% higher, while the density is manufactured by sintering.

High-energy magnet

the strongest . Compared to approx. 12% lower and the base materials are more easily available. The magnets are

MAGNET MATERIAL

Neodymium iron boron, $Nd_2Fe_{14}B$ unshielded

FASTENING OPTION Glueing, pressing

Max. service temperature: 80 °C Remanence: 1000 mT to 1250 mT

Disc magnets MK	30:	Cuboid magne	ts MK 51:
	Ņ		
ØA	S	В	/

r mm ▲ .5	В	⊢ ^k g ⊣ Weight	Туре	A	- mm		г kg ר			r-	- mm		_ kg -
	_	Weight	Туре	Δ	п	-							
5				~	в	С	Weight		Туре	Α	В	С	Weight
.5	2	0.1	MK 51 - 02 - 02 - 01	2	2	1	0.1		MK 52 - 15 - 05 - 06	15	5	6	7.0
2	4	0.1	MK 51 - 03 - 03 - 01	3	3	1	0.1		MK 52 - 20 - 04 - 05	20	4.2	5	11.0
2	10	0.2	MK 51 - 04 - 04 - 02	4	4	2	0.2		MK 52 - 20 - 10 - 06	20	10	6	10.0
3	3	0.2	MK 51 - 04 - 05 - 05	4.8	4.8	4.5	0.8		MK 52 - 25 - 12 - 08	25	12	8	22.0
4	1.2	0.1	MK 51 - 05 - 05 - 02	5	5	2	0.4		MK 52 - 40 - 23 - 06	40	23	6	37.0
4	1.5	0.1	MK 51 - 05 - 05 - 01	5	4.5	1.5	0.2						
4	5	0.5	MK 51 - 06 - 03 - 01	6	3	1	0.1						
5	3	0.4	MK 51 - 06 - 06 - 05	6	6	5	1.0						
5	10	2.0	MK 51 - 08 - 08 - 06	8	8	6	1.0						
6	2	0.4	MK 51 - 10 - 07 - 02	10	7	2	3.0						
6	5	1.0	MK 51 - 10 - 10 - 03	10	10	3	2.0						
8	6	2.0	MK 51 - 10 - 10 - 06	10	10	6	4.0						
9	5	2.0	MK 51 - 12 - 09 - 03	12	9	2.5	2.0						
0	3	2.0	MK 51 - 15 - 15 - 05	15	15	5	8.0						
0	5	2.0	MK 51 - 18 - 16 - 04	18	16	4	9.0						
3.5	3.5	4.0	MK 51 - 20 - 10 - 05	20	10	5	7.0						
15	3	4.0	MK 51 - 20 - 20 - 08	20	20	8	24.0						
15	5	4.0	MK 51 - 30 - 10 - 06	30	10	6	13.0						
20	5	7.0	MK 51 - 30 - 30 - 06	30	30	6	40.0						
20	10	23.0	MK 51 - 50 - 20 - 08	50	20	8	59.0						
25	7	25.0	MK 51 - 75 - 50 - 10	75	50	10	278.0						
	2 3 4 4 4 4 4 5 5 5 5 6 6 6 8 8 9 0 0 0 0 3.5 5 5 5 5 0 0 0000	2 10 3 3 4 1.2 4 1.5 4 5 5 3 5 10 6 2 6 2 6 5 8 6 9 5 0 3 0 5 3.5 3.5 5 5 5 5 60 5 8 6 9 5 0 5 3.5 5 5 5 60 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 <t< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>2 10 0.2 MK 51 - 04 - 04 - 02 3 3 0.2 MK 51 - 04 - 05 - 05 4 1.2 0.1 MK 51 - 05 - 05 - 02 4 1.5 0.1 MK 51 - 05 - 05 - 02 4 5 0.5 MK 51 - 06 - 03 - 01 5 3 0.4 MK 51 - 06 - 06 - 05 5 10 2.0 MK 51 - 10 - 07 - 02 6 2 0.4 MK 51 - 10 - 07 - 02 6 5 1.0 MK 51 - 10 - 10 - 03 8 6 2.0 MK 51 - 10 - 10 - 03 9 5 2.0 MK 51 - 10 - 10 - 03 9 5 2.0 MK 51 - 12 - 09 - 03 0 3 2.0 MK 51 - 15 - 15 - 05 0 5 2.0 MK 51 - 20 - 10 - 05 5 3 4.0 MK 51 - 20 - 20 - 08 5 5 4.0 MK 51 - 30 - 10 - 06 5 5 4.0 MK 51 - 30 - 30 - 06 60 5 7.0</td></t<> <td>2 10 0.2 MK 51 - 04 - 04 - 02 4 3 3 0.2 MK 51 - 04 - 05 - 05 4.8 4 1.2 0.1 MK 51 - 05 - 05 - 02 5 4 1.5 0.1 MK 51 - 05 - 05 - 02 5 4 5 0.5 MK 51 - 05 - 05 - 01 5 5 3 0.4 MK 51 - 06 - 03 - 01 6 5 3 0.4 MK 51 - 06 - 06 - 05 6 5 10 2.0 MK 51 - 10 - 07 - 02 10 6 2 0.4 MK 51 - 10 - 07 - 02 10 6 2 0.4 MK 51 - 10 - 07 - 02 10 7 5 2.0 MK 51 - 10 - 10 - 03 10 9 5 2.0 MK 51 - 12 - 09 - 03 12 0 3 2.0 MK 51 - 15 - 05 15 0 5 2.0 MK 51 - 20 - 10 - 05 20 5 3 4.0 MK 51 - 20 - 20 - 08 20</td> <td>2 10 0.2 MK 51 - 04 - 02 4 4 3 3 0.2 MK 51 - 04 - 05 - 05 4.8 4.8 4 1.2 0.1 MK 51 - 05 - 05 - 02 5 5 4 1.5 0.1 MK 51 - 05 - 05 - 01 5 4.5 4 5 0.5 MK 51 - 06 - 03 - 01 6 3 5 3 0.4 MK 51 - 06 - 03 - 01 6 3 5 10 2.0 MK 51 - 06 - 06 - 05 6 6 5 10 2.0 MK 51 - 10 - 07 - 02 10 7 6 5 1.0 MK 51 - 10 - 10 - 03 10 10 8 6 2.0 MK 51 - 10 - 10 - 03 12 9 0 3 2.0 MK 51 - 12 - 09 - 03 12 9 0 3 2.0 MK 51 - 18 - 16 - 04 18 16 8.5 3.5 4.0 MK 51 - 20 - 10 - 05 20 10 5 3 4.0 MK 51 - 30 - 10 - 06 30 10 5 5 4.0 MK 51 - 30 - 10 - 06 30 30 0 5 7.0 MK 51 - 30 - 30 - 06 30 30 0 5 7.0 MK 51 - 30 - 20 - 08 50 20</td> <td>2 10 0.2 MK 51 - 04 - 02 4 4 2 3 3 0.2 MK 51 - 04 - 05 - 05 4.8 4.8 4.5 4 1.2 0.1 MK 51 - 05 - 05 - 02 5 5 2 4 1.5 0.1 MK 51 - 05 - 05 - 01 5 4.5 1.5 4 5 0.5 MK 51 - 06 - 03 - 01 6 3 1 5 3 0.4 MK 51 - 06 - 05 6 6 5 5 10 2.0 MK 51 - 10 - 07 - 02 10 7 2 6 2 0.4 MK 51 - 10 - 10 - 03 10 10 3 8 6 2.0 MK 51 - 10 - 10 - 03 10 10 3 8 6 2.0 MK 51 - 12 - 09 - 03 12 9 2.5 0 3 2.0 MK 51 - 15 - 15 - 15 15 15 5 0 5 2.0 MK 51 - 20 - 10 0 5 20 10 5 5 3 4.0 MK 51 - 20 - 10 - 05 20 10 5 5 3 4.0 MK 51 - 20 - 0.8 20 20 8 5 5 4.0 MK 51 - 30 - 10 - 06 30 10 6 60 5 7.0 MK 51 - 30 - 30 - 06 30 20 30 6</td> <td>210$0.2$MK 51 $\cdot 04 \cdot 02 \cdot 4$42$0.2$33$0.2$MK 51 $\cdot 04 \cdot 05 \cdot 05 \cdot 05 \cdot 4.8$$4.8$$4.5$$0.8$41.2$0.1$MK 51 $\cdot 05 \cdot 05 \cdot 05 \cdot 02 \cdot 5$$5$$2$$0.4$41.5$0.1$MK 51 $\cdot 05 \cdot 05 \cdot 05 \cdot 02 \cdot 5$$5$$2$$0.4$4$5$$0.5$MK 51 $\cdot 05 \cdot 05 \cdot 01 \cdot 5$$4.5 \cdot 1.5 \cdot 0.2$4$5$$0.5$MK 51 $\cdot 06 \cdot 03 \cdot 01 \cdot 6$$3$$1$$0.1$53$0.4$MK 51 $\cdot 06 \cdot 05 \cdot 66 \cdot 66 \cdot 5$$1.0$510$2.0$MK 51 $\cdot 08 \cdot 08 \cdot 06 \cdot 8$$8$$6$$1.0$$6$2$0.4$MK 51 $\cdot 10 \cdot 07 \cdot 02 \cdot 10$$7$$2$$3.0$$6$5$1.0$MK 51 $\cdot 10 \cdot 10 \cdot 03 \cdot 10 \cdot 10$$3$$2.0$$8$$6$$2.0$MK 51 $\cdot 12 \cdot 09 \cdot 03 \cdot 12$$9$$2.5 \cdot 2.0$$0$$3$$2.0$MK 51 $\cdot 15 \cdot 15 \cdot 05 \cdot 15 \cdot 15 \cdot 5$$8.0$$0$$5$$2.0$MK 51 $\cdot 20 \cdot 10 \cdot 05 \cdot 20 \cdot 10 \cdot 5 \cdot 7.0$$5$$3$$4.0$MK 51 $\cdot 20 \cdot 20 \cdot 08 \cdot 20 \cdot 20 \cdot 8$$24.0$$5$$5$$4.0$MK 51 $\cdot 30 \cdot 10 \cdot 06 \cdot 30 \cdot 10 \cdot 6 \cdot 13.0$$0$$5$$7.0$MK 51 $\cdot 30 \cdot 30 \cdot 06 \cdot 30 \cdot 30 \cdot 6 \cdot 40.0$$0$$10$$23.0$MK 51 $\cdot 50 \cdot 20 \cdot 08 \cdot 50 \cdot 20 \cdot 8 \cdot 59.0$</td> <td>2 10 0.2 MK 51 - 04 - 02 4 4 2 0.2 3 3 0.2 MK 51 - 04 - 05 - 05 4.8 4.8 4.5 0.8 4 1.2 0.1 MK 51 - 05 - 05 - 02 5 5 2 0.4 4 1.5 0.1 MK 51 - 06 - 03 - 01 5 4.5 1.5 0.2 4 5 0.5 MK 51 - 06 - 03 - 01 6 3 1 0.1 5 3 0.4 MK 51 - 06 - 05 6 6 5 1.0 5 10 2.0 MK 51 - 10 - 07 - 02 10 7 2 3.0 5 10 2.0 MK 51 - 10 - 10 - 03 10 10 3 2.0 6 2 0.4 MK 51 - 10 - 10 - 03 10 10 3 2.0 8 6 2.0 MK 51 - 10 - 10 - 03 10 10 3 2.0 8 6 2.0 MK 51 - 12 - 09 - 03 12 9 2.5 2.0 0 3 2.0 MK 51 - 15 - 15 - 15 15 15 5 8.0 0 5 2.0 MK 51 - 20 - 20 - 08 20 20 8 24.0 5 3 4.0 MK 51 - 20 - 20 - 08 20 20 8 24.0 5 5 4.0 MK 51 - 30 - 10 - 06 30 10 6 13.0 6 7.0 MK 51 - 30 - 10 - 06 30 30 6 40.0 7.0 5 5 4.0 7.0 5<!--</td--><td>2 10 0.2 MK 51 - 04 - 02 4 4 2 0.2 MK 52 - 20 - 10 - 06 3 3 0.2 MK 51 - 04 - 05 - 05 4.8 4.8 4.5 0.8 MK 52 - 25 - 12 - 08 4 1.2 0.1 MK 51 - 05 - 05 - 02 5 5 2 0.4 MK 52 - 40 - 23 - 06 4 1.5 0.1 MK 51 - 05 - 05 - 01 5 4.5 1.5 0.2 MK 52 - 40 - 23 - 06 4 5 0.5 MK 51 - 06 - 03 - 01 6 3 1 0.1 MK 52 - 40 - 23 - 06 5 3 0.4 MK 51 - 06 - 05 6 6 5 1.0 MK 51 - 08 - 08 - 06 8 8 8 6 1.0 5 10 2.0 MK 51 - 10 - 07 - 02 10 7 2 3.0 MK 51 - 10 - 10 - 03 10 10 3 2.0 6 2 0.4 MK 51 - 10 - 10 - 03 10 10 3 2.0 MK 51 - 12 - 09 - 03 12 9 2.5 2.0 0 3 2.0 MK 51 - 15 - 15 - 05 15 15 5 8.0 MK 51 - 18 - 16 - 04 18 16 4 9.0 9 5 2.0 MK 51 - 20 - 10 - 05 20 10 5 7.0 5 3 5 3 4.0 MK 51 - 20 - 20 - 08 20 20 8 24.0 5 5 5 4.0 MK 51 - 30 - 30 - 06 30 10 6 13.0 30 6 40.0 00 5 7.0 MK 51 - 50 - 20 - 08 50 20 8 59.0 8 59.0</td><td>2 10 0.2 MK 51 - 04 - 02 4 4 2 0.2 MK 52 - 20 - 10 - 06 20 3 3 0.2 MK 51 - 04 - 05 - 05 4.8 4.8 4.5 0.8 MK 52 - 25 - 12 - 08 25 4 1.2 0.1 MK 51 - 05 - 05 - 02 5 5 2 0.4 MK 52 - 20 - 10 - 06 20 4 1.5 0.1 MK 51 - 05 - 05 - 01 5 4.5 1.5 0.2 MK 52 - 40 - 23 - 06 40 4 5 0.5 MK 51 - 06 - 03 - 01 6 3 1 0.1 MK 51 - 06 - 06 - 05 6 6 5 1.0 5 3 0.4 MK 51 - 10 - 07 - 02 10 7 2 3.0 MK 51 - 10 - 10 - 03 10 10 3 2.0 5 1.0 MK 51 - 10 - 10 - 03 10 10 3 2.0 MK 51 - 12 - 09 - 03 12 9 2.5 2.0 6 2.0 MK 51 - 15 - 15 - 05 15 15 5 8.0 MK 51 - 12 - 09 - 03 12 9 2.5 2.0 0 3 2.0 MK 51 - 10 - 10 - 05 20 10 5 7.0 5 5 3.0 MK 51 - 12 - 09 - 03 12 9 2.5 2.0 MK 51 - 12 - 09 - 03 12 9 2.5 7.0 0 3 2.0 MK 51 - 20 - 10 - 05 20 10 5 7.0 5 5 3 4.0 MK 51 - 20 - 10 - 05 20 10 5 7.0 5 5 3 4.0 MK 51 - 30 - 10 - 06 30 10 6 13.0 6 6 7.0 MK 5</td><td>2 10 0.2 MK 51 - 04 - 02 4 4 2 0.2 MK 52 - 20 - 10 - 06 20 10 3 3 0.2 MK 51 - 04 - 05 - 05 4.8 4.8 4.5 0.8 MK 52 - 25 - 12 - 08 25 12 4 1.2 0.1 MK 51 - 05 - 05 - 02 5 5 2 0.4 MK 52 - 40 - 23 - 06 40 23 4 1.5 0.1 MK 51 - 06 - 03 - 01 6 3 1 0.1 MK 52 - 40 - 23 - 06 40 23 5 3 0.4 MK 51 - 06 - 03 - 01 6 3 1 0.1 MK 51 - 06 - 03 - 01 7 2 3.0 5 10 2.0 MK 51 - 10 - 07 - 02 10 7 2 3.0 MK 51 - 10 - 10 - 03 10 10 3 2.0 6 2 0.4 MK 51 - 10 - 10 - 03 10 10 3 2.0 MK 51 - 15 - 15 - 15 15 5 8.0 9 5 2.0 MK 51 - 15 - 15 - 15 15 5 8.0 MK 51 - 10 - 10 - 05 20 10 5 7.0 9 5 2.0 MK 51 - 12 - 09 - 03 12 9 2.5 2.0 MK 51 - 12 - 09 - 03 12 9 2.5 2.0 0 3 2.0 MK 51 - 20 - 10 - 05 20 10 5 7.0 5 3.0 5 3 4.0 MK 51 - 20 - 20 - 08 20 20 8 24.0 5 3.0 5 5 4.0 MK 51 - 30 - 10 - 06 30 10 6 13.0 3.0 4.0 0 5 7.0 MK 51 - 30 - 2</td><td>2 10 0.2 MK 51 - 04 - 02 4 4 2 0.2 MK 52 - 20 - 10 - 06 20 10 6 3 3 0.2 MK 51 - 04 - 05 - 05 4.8 4.8 4.5 0.8 MK 52 - 25 - 12 - 08 25 12 8 4 1.2 0.1 MK 51 - 05 - 05 - 02 5 5 2 0.4 MK 52 - 40 - 23 - 06 40 23 6 4 1.5 0.1 MK 51 - 06 - 03 - 01 6 3 1 0.1 MK 52 - 40 - 23 - 06 40 23 6 5 3 0.4 MK 51 - 06 - 03 - 01 6 5 6 6 5 1.0 MK 51 - 06 - 06 - 05 6 6 6 5 1.0 5 10 2.0 MK 51 - 10 - 07 - 02 10 7 2 3.0 3.0 6 2 0.4 MK 51 - 10 - 10 - 03 10 10 3 2.0 4.0 8 6 2.0 MK 51 - 10 - 10 - 03 10 10 3 2.0 4.0 9 5 2.0 MK 51 - 12 - 09 - 03 12 9 2.5 2.0 4.0 0 3 2.0 MK 51 - 12 - 09 - 03 12 9 2.5 2.0 4.0 0 3 2.0 MK 51 - 20 - 10 - 05 20 10 5 7.0 5.0 5.0 3.5 3.5 4.0 MK 51 - 20 - 10 - 05 20 10 5 7.0 5.0 5.0 5 3 4.0 MK 51 - 20 - 20 - 08 20 20 8 24.0 4.0 5 5</td></td>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 10 0.2 MK 51 - 04 - 04 - 02 3 3 0.2 MK 51 - 04 - 05 - 05 4 1.2 0.1 MK 51 - 05 - 05 - 02 4 1.5 0.1 MK 51 - 05 - 05 - 02 4 5 0.5 MK 51 - 06 - 03 - 01 5 3 0.4 MK 51 - 06 - 06 - 05 5 10 2.0 MK 51 - 10 - 07 - 02 6 2 0.4 MK 51 - 10 - 07 - 02 6 5 1.0 MK 51 - 10 - 10 - 03 8 6 2.0 MK 51 - 10 - 10 - 03 9 5 2.0 MK 51 - 10 - 10 - 03 9 5 2.0 MK 51 - 12 - 09 - 03 0 3 2.0 MK 51 - 15 - 15 - 05 0 5 2.0 MK 51 - 20 - 10 - 05 5 3 4.0 MK 51 - 20 - 20 - 08 5 5 4.0 MK 51 - 30 - 10 - 06 5 5 4.0 MK 51 - 30 - 30 - 06 60 5 7.0	2 10 0.2 MK 51 - 04 - 04 - 02 4 3 3 0.2 MK 51 - 04 - 05 - 05 4.8 4 1.2 0.1 MK 51 - 05 - 05 - 02 5 4 1.5 0.1 MK 51 - 05 - 05 - 02 5 4 5 0.5 MK 51 - 05 - 05 - 01 5 5 3 0.4 MK 51 - 06 - 03 - 01 6 5 3 0.4 MK 51 - 06 - 06 - 05 6 5 10 2.0 MK 51 - 10 - 07 - 02 10 6 2 0.4 MK 51 - 10 - 07 - 02 10 6 2 0.4 MK 51 - 10 - 07 - 02 10 7 5 2.0 MK 51 - 10 - 10 - 03 10 9 5 2.0 MK 51 - 12 - 09 - 03 12 0 3 2.0 MK 51 - 15 - 05 15 0 5 2.0 MK 51 - 20 - 10 - 05 20 5 3 4.0 MK 51 - 20 - 20 - 08 20	2 10 0.2 MK 51 - 04 - 02 4 4 3 3 0.2 MK 51 - 04 - 05 - 05 4.8 4.8 4 1.2 0.1 MK 51 - 05 - 05 - 02 5 5 4 1.5 0.1 MK 51 - 05 - 05 - 01 5 4.5 4 5 0.5 MK 51 - 06 - 03 - 01 6 3 5 3 0.4 MK 51 - 06 - 03 - 01 6 3 5 10 2.0 MK 51 - 06 - 06 - 05 6 6 5 10 2.0 MK 51 - 10 - 07 - 02 10 7 6 5 1.0 MK 51 - 10 - 10 - 03 10 10 8 6 2.0 MK 51 - 10 - 10 - 03 12 9 0 3 2.0 MK 51 - 12 - 09 - 03 12 9 0 3 2.0 MK 51 - 18 - 16 - 04 18 16 8.5 3.5 4.0 MK 51 - 20 - 10 - 05 20 10 5 3 4.0 MK 51 - 30 - 10 - 06 30 10 5 5 4.0 MK 51 - 30 - 10 - 06 30 30 0 5 7.0 MK 51 - 30 - 30 - 06 30 30 0 5 7.0 MK 51 - 30 - 20 - 08 50 20	2 10 0.2 MK 51 - 04 - 02 4 4 2 3 3 0.2 MK 51 - 04 - 05 - 05 4.8 4.8 4.5 4 1.2 0.1 MK 51 - 05 - 05 - 02 5 5 2 4 1.5 0.1 MK 51 - 05 - 05 - 01 5 4.5 1.5 4 5 0.5 MK 51 - 06 - 03 - 01 6 3 1 5 3 0.4 MK 51 - 06 - 05 6 6 5 5 10 2.0 MK 51 - 10 - 07 - 02 10 7 2 6 2 0.4 MK 51 - 10 - 10 - 03 10 10 3 8 6 2.0 MK 51 - 10 - 10 - 03 10 10 3 8 6 2.0 MK 51 - 12 - 09 - 03 12 9 2.5 0 3 2.0 MK 51 - 15 - 15 - 15 15 15 5 0 5 2.0 MK 51 - 20 - 10 0 5 20 10 5 5 3 4.0 MK 51 - 20 - 10 - 05 20 10 5 5 3 4.0 MK 51 - 20 - 0.8 20 20 8 5 5 4.0 MK 51 - 30 - 10 - 06 30 10 6 60 5 7.0 MK 51 - 30 - 30 - 06 30 20 30 6	210 0.2 MK 51 $\cdot 04 \cdot 02 \cdot 4$ 42 0.2 33 0.2 MK 51 $\cdot 04 \cdot 05 \cdot 05 \cdot 05 \cdot 4.8$ 4.8 4.5 0.8 41.2 0.1 MK 51 $\cdot 05 \cdot 05 \cdot 05 \cdot 02 \cdot 5$ 5 2 0.4 41.5 0.1 MK 51 $\cdot 05 \cdot 05 \cdot 05 \cdot 02 \cdot 5$ 5 2 0.4 4 5 0.5 MK 51 $\cdot 05 \cdot 05 \cdot 01 \cdot 5$ $4.5 \cdot 1.5 \cdot 0.2$ 4 5 0.5 MK 51 $\cdot 06 \cdot 03 \cdot 01 \cdot 6$ 3 1 0.1 53 0.4 MK 51 $\cdot 06 \cdot 05 \cdot 66 \cdot 66 \cdot 5$ 1.0 510 2.0 MK 51 $\cdot 08 \cdot 08 \cdot 06 \cdot 8$ 8 6 1.0 6 2 0.4 MK 51 $\cdot 10 \cdot 07 \cdot 02 \cdot 10$ 7 2 3.0 6 5 1.0 MK 51 $\cdot 10 \cdot 10 \cdot 03 \cdot 10 \cdot 10$ 3 2.0 8 6 2.0 MK 51 $\cdot 12 \cdot 09 \cdot 03 \cdot 12$ 9 $2.5 \cdot 2.0$ 0 3 2.0 MK 51 $\cdot 15 \cdot 15 \cdot 05 \cdot 15 \cdot 15 \cdot 5$ 8.0 0 5 2.0 MK 51 $\cdot 20 \cdot 10 \cdot 05 \cdot 20 \cdot 10 \cdot 5 \cdot 7.0$ 5 3 4.0 MK 51 $\cdot 20 \cdot 20 \cdot 08 \cdot 20 \cdot 20 \cdot 8$ 24.0 5 5 4.0 MK 51 $\cdot 30 \cdot 10 \cdot 06 \cdot 30 \cdot 10 \cdot 6 \cdot 13.0$ 0 5 7.0 MK 51 $\cdot 30 \cdot 30 \cdot 06 \cdot 30 \cdot 30 \cdot 6 \cdot 40.0$ 0 10 23.0 MK 51 $\cdot 50 \cdot 20 \cdot 08 \cdot 50 \cdot 20 \cdot 8 \cdot 59.0$	2 10 0.2 MK 51 - 04 - 02 4 4 2 0.2 3 3 0.2 MK 51 - 04 - 05 - 05 4.8 4.8 4.5 0.8 4 1.2 0.1 MK 51 - 05 - 05 - 02 5 5 2 0.4 4 1.5 0.1 MK 51 - 06 - 03 - 01 5 4.5 1.5 0.2 4 5 0.5 MK 51 - 06 - 03 - 01 6 3 1 0.1 5 3 0.4 MK 51 - 06 - 05 6 6 5 1.0 5 10 2.0 MK 51 - 10 - 07 - 02 10 7 2 3.0 5 10 2.0 MK 51 - 10 - 10 - 03 10 10 3 2.0 6 2 0.4 MK 51 - 10 - 10 - 03 10 10 3 2.0 8 6 2.0 MK 51 - 10 - 10 - 03 10 10 3 2.0 8 6 2.0 MK 51 - 12 - 09 - 03 12 9 2.5 2.0 0 3 2.0 MK 51 - 15 - 15 - 15 15 15 5 8.0 0 5 2.0 MK 51 - 20 - 20 - 08 20 20 8 24.0 5 3 4.0 MK 51 - 20 - 20 - 08 20 20 8 24.0 5 5 4.0 MK 51 - 30 - 10 - 06 30 10 6 13.0 6 7.0 MK 51 - 30 - 10 - 06 30 30 6 40.0 7.0 5 5 4.0 7.0 5 </td <td>2 10 0.2 MK 51 - 04 - 02 4 4 2 0.2 MK 52 - 20 - 10 - 06 3 3 0.2 MK 51 - 04 - 05 - 05 4.8 4.8 4.5 0.8 MK 52 - 25 - 12 - 08 4 1.2 0.1 MK 51 - 05 - 05 - 02 5 5 2 0.4 MK 52 - 40 - 23 - 06 4 1.5 0.1 MK 51 - 05 - 05 - 01 5 4.5 1.5 0.2 MK 52 - 40 - 23 - 06 4 5 0.5 MK 51 - 06 - 03 - 01 6 3 1 0.1 MK 52 - 40 - 23 - 06 5 3 0.4 MK 51 - 06 - 05 6 6 5 1.0 MK 51 - 08 - 08 - 06 8 8 8 6 1.0 5 10 2.0 MK 51 - 10 - 07 - 02 10 7 2 3.0 MK 51 - 10 - 10 - 03 10 10 3 2.0 6 2 0.4 MK 51 - 10 - 10 - 03 10 10 3 2.0 MK 51 - 12 - 09 - 03 12 9 2.5 2.0 0 3 2.0 MK 51 - 15 - 15 - 05 15 15 5 8.0 MK 51 - 18 - 16 - 04 18 16 4 9.0 9 5 2.0 MK 51 - 20 - 10 - 05 20 10 5 7.0 5 3 5 3 4.0 MK 51 - 20 - 20 - 08 20 20 8 24.0 5 5 5 4.0 MK 51 - 30 - 30 - 06 30 10 6 13.0 30 6 40.0 00 5 7.0 MK 51 - 50 - 20 - 08 50 20 8 59.0 8 59.0</td> <td>2 10 0.2 MK 51 - 04 - 02 4 4 2 0.2 MK 52 - 20 - 10 - 06 20 3 3 0.2 MK 51 - 04 - 05 - 05 4.8 4.8 4.5 0.8 MK 52 - 25 - 12 - 08 25 4 1.2 0.1 MK 51 - 05 - 05 - 02 5 5 2 0.4 MK 52 - 20 - 10 - 06 20 4 1.5 0.1 MK 51 - 05 - 05 - 01 5 4.5 1.5 0.2 MK 52 - 40 - 23 - 06 40 4 5 0.5 MK 51 - 06 - 03 - 01 6 3 1 0.1 MK 51 - 06 - 06 - 05 6 6 5 1.0 5 3 0.4 MK 51 - 10 - 07 - 02 10 7 2 3.0 MK 51 - 10 - 10 - 03 10 10 3 2.0 5 1.0 MK 51 - 10 - 10 - 03 10 10 3 2.0 MK 51 - 12 - 09 - 03 12 9 2.5 2.0 6 2.0 MK 51 - 15 - 15 - 05 15 15 5 8.0 MK 51 - 12 - 09 - 03 12 9 2.5 2.0 0 3 2.0 MK 51 - 10 - 10 - 05 20 10 5 7.0 5 5 3.0 MK 51 - 12 - 09 - 03 12 9 2.5 2.0 MK 51 - 12 - 09 - 03 12 9 2.5 7.0 0 3 2.0 MK 51 - 20 - 10 - 05 20 10 5 7.0 5 5 3 4.0 MK 51 - 20 - 10 - 05 20 10 5 7.0 5 5 3 4.0 MK 51 - 30 - 10 - 06 30 10 6 13.0 6 6 7.0 MK 5</td> <td>2 10 0.2 MK 51 - 04 - 02 4 4 2 0.2 MK 52 - 20 - 10 - 06 20 10 3 3 0.2 MK 51 - 04 - 05 - 05 4.8 4.8 4.5 0.8 MK 52 - 25 - 12 - 08 25 12 4 1.2 0.1 MK 51 - 05 - 05 - 02 5 5 2 0.4 MK 52 - 40 - 23 - 06 40 23 4 1.5 0.1 MK 51 - 06 - 03 - 01 6 3 1 0.1 MK 52 - 40 - 23 - 06 40 23 5 3 0.4 MK 51 - 06 - 03 - 01 6 3 1 0.1 MK 51 - 06 - 03 - 01 7 2 3.0 5 10 2.0 MK 51 - 10 - 07 - 02 10 7 2 3.0 MK 51 - 10 - 10 - 03 10 10 3 2.0 6 2 0.4 MK 51 - 10 - 10 - 03 10 10 3 2.0 MK 51 - 15 - 15 - 15 15 5 8.0 9 5 2.0 MK 51 - 15 - 15 - 15 15 5 8.0 MK 51 - 10 - 10 - 05 20 10 5 7.0 9 5 2.0 MK 51 - 12 - 09 - 03 12 9 2.5 2.0 MK 51 - 12 - 09 - 03 12 9 2.5 2.0 0 3 2.0 MK 51 - 20 - 10 - 05 20 10 5 7.0 5 3.0 5 3 4.0 MK 51 - 20 - 20 - 08 20 20 8 24.0 5 3.0 5 5 4.0 MK 51 - 30 - 10 - 06 30 10 6 13.0 3.0 4.0 0 5 7.0 MK 51 - 30 - 2</td> <td>2 10 0.2 MK 51 - 04 - 02 4 4 2 0.2 MK 52 - 20 - 10 - 06 20 10 6 3 3 0.2 MK 51 - 04 - 05 - 05 4.8 4.8 4.5 0.8 MK 52 - 25 - 12 - 08 25 12 8 4 1.2 0.1 MK 51 - 05 - 05 - 02 5 5 2 0.4 MK 52 - 40 - 23 - 06 40 23 6 4 1.5 0.1 MK 51 - 06 - 03 - 01 6 3 1 0.1 MK 52 - 40 - 23 - 06 40 23 6 5 3 0.4 MK 51 - 06 - 03 - 01 6 5 6 6 5 1.0 MK 51 - 06 - 06 - 05 6 6 6 5 1.0 5 10 2.0 MK 51 - 10 - 07 - 02 10 7 2 3.0 3.0 6 2 0.4 MK 51 - 10 - 10 - 03 10 10 3 2.0 4.0 8 6 2.0 MK 51 - 10 - 10 - 03 10 10 3 2.0 4.0 9 5 2.0 MK 51 - 12 - 09 - 03 12 9 2.5 2.0 4.0 0 3 2.0 MK 51 - 12 - 09 - 03 12 9 2.5 2.0 4.0 0 3 2.0 MK 51 - 20 - 10 - 05 20 10 5 7.0 5.0 5.0 3.5 3.5 4.0 MK 51 - 20 - 10 - 05 20 10 5 7.0 5.0 5.0 5 3 4.0 MK 51 - 20 - 20 - 08 20 20 8 24.0 4.0 5 5</td>	2 10 0.2 MK 51 - 04 - 02 4 4 2 0.2 MK 52 - 20 - 10 - 06 3 3 0.2 MK 51 - 04 - 05 - 05 4.8 4.8 4.5 0.8 MK 52 - 25 - 12 - 08 4 1.2 0.1 MK 51 - 05 - 05 - 02 5 5 2 0.4 MK 52 - 40 - 23 - 06 4 1.5 0.1 MK 51 - 05 - 05 - 01 5 4.5 1.5 0.2 MK 52 - 40 - 23 - 06 4 5 0.5 MK 51 - 06 - 03 - 01 6 3 1 0.1 MK 52 - 40 - 23 - 06 5 3 0.4 MK 51 - 06 - 05 6 6 5 1.0 MK 51 - 08 - 08 - 06 8 8 8 6 1.0 5 10 2.0 MK 51 - 10 - 07 - 02 10 7 2 3.0 MK 51 - 10 - 10 - 03 10 10 3 2.0 6 2 0.4 MK 51 - 10 - 10 - 03 10 10 3 2.0 MK 51 - 12 - 09 - 03 12 9 2.5 2.0 0 3 2.0 MK 51 - 15 - 15 - 05 15 15 5 8.0 MK 51 - 18 - 16 - 04 18 16 4 9.0 9 5 2.0 MK 51 - 20 - 10 - 05 20 10 5 7.0 5 3 5 3 4.0 MK 51 - 20 - 20 - 08 20 20 8 24.0 5 5 5 4.0 MK 51 - 30 - 30 - 06 30 10 6 13.0 30 6 40.0 00 5 7.0 MK 51 - 50 - 20 - 08 50 20 8 59.0 8 59.0	2 10 0.2 MK 51 - 04 - 02 4 4 2 0.2 MK 52 - 20 - 10 - 06 20 3 3 0.2 MK 51 - 04 - 05 - 05 4.8 4.8 4.5 0.8 MK 52 - 25 - 12 - 08 25 4 1.2 0.1 MK 51 - 05 - 05 - 02 5 5 2 0.4 MK 52 - 20 - 10 - 06 20 4 1.5 0.1 MK 51 - 05 - 05 - 01 5 4.5 1.5 0.2 MK 52 - 40 - 23 - 06 40 4 5 0.5 MK 51 - 06 - 03 - 01 6 3 1 0.1 MK 51 - 06 - 06 - 05 6 6 5 1.0 5 3 0.4 MK 51 - 10 - 07 - 02 10 7 2 3.0 MK 51 - 10 - 10 - 03 10 10 3 2.0 5 1.0 MK 51 - 10 - 10 - 03 10 10 3 2.0 MK 51 - 12 - 09 - 03 12 9 2.5 2.0 6 2.0 MK 51 - 15 - 15 - 05 15 15 5 8.0 MK 51 - 12 - 09 - 03 12 9 2.5 2.0 0 3 2.0 MK 51 - 10 - 10 - 05 20 10 5 7.0 5 5 3.0 MK 51 - 12 - 09 - 03 12 9 2.5 2.0 MK 51 - 12 - 09 - 03 12 9 2.5 7.0 0 3 2.0 MK 51 - 20 - 10 - 05 20 10 5 7.0 5 5 3 4.0 MK 51 - 20 - 10 - 05 20 10 5 7.0 5 5 3 4.0 MK 51 - 30 - 10 - 06 30 10 6 13.0 6 6 7.0 MK 5	2 10 0.2 MK 51 - 04 - 02 4 4 2 0.2 MK 52 - 20 - 10 - 06 20 10 3 3 0.2 MK 51 - 04 - 05 - 05 4.8 4.8 4.5 0.8 MK 52 - 25 - 12 - 08 25 12 4 1.2 0.1 MK 51 - 05 - 05 - 02 5 5 2 0.4 MK 52 - 40 - 23 - 06 40 23 4 1.5 0.1 MK 51 - 06 - 03 - 01 6 3 1 0.1 MK 52 - 40 - 23 - 06 40 23 5 3 0.4 MK 51 - 06 - 03 - 01 6 3 1 0.1 MK 51 - 06 - 03 - 01 7 2 3.0 5 10 2.0 MK 51 - 10 - 07 - 02 10 7 2 3.0 MK 51 - 10 - 10 - 03 10 10 3 2.0 6 2 0.4 MK 51 - 10 - 10 - 03 10 10 3 2.0 MK 51 - 15 - 15 - 15 15 5 8.0 9 5 2.0 MK 51 - 15 - 15 - 15 15 5 8.0 MK 51 - 10 - 10 - 05 20 10 5 7.0 9 5 2.0 MK 51 - 12 - 09 - 03 12 9 2.5 2.0 MK 51 - 12 - 09 - 03 12 9 2.5 2.0 0 3 2.0 MK 51 - 20 - 10 - 05 20 10 5 7.0 5 3.0 5 3 4.0 MK 51 - 20 - 20 - 08 20 20 8 24.0 5 3.0 5 5 4.0 MK 51 - 30 - 10 - 06 30 10 6 13.0 3.0 4.0 0 5 7.0 MK 51 - 30 - 2	2 10 0.2 MK 51 - 04 - 02 4 4 2 0.2 MK 52 - 20 - 10 - 06 20 10 6 3 3 0.2 MK 51 - 04 - 05 - 05 4.8 4.8 4.5 0.8 MK 52 - 25 - 12 - 08 25 12 8 4 1.2 0.1 MK 51 - 05 - 05 - 02 5 5 2 0.4 MK 52 - 40 - 23 - 06 40 23 6 4 1.5 0.1 MK 51 - 06 - 03 - 01 6 3 1 0.1 MK 52 - 40 - 23 - 06 40 23 6 5 3 0.4 MK 51 - 06 - 03 - 01 6 5 6 6 5 1.0 MK 51 - 06 - 06 - 05 6 6 6 5 1.0 5 10 2.0 MK 51 - 10 - 07 - 02 10 7 2 3.0 3.0 6 2 0.4 MK 51 - 10 - 10 - 03 10 10 3 2.0 4.0 8 6 2.0 MK 51 - 10 - 10 - 03 10 10 3 2.0 4.0 9 5 2.0 MK 51 - 12 - 09 - 03 12 9 2.5 2.0 4.0 0 3 2.0 MK 51 - 12 - 09 - 03 12 9 2.5 2.0 4.0 0 3 2.0 MK 51 - 20 - 10 - 05 20 10 5 7.0 5.0 5.0 3.5 3.5 4.0 MK 51 - 20 - 10 - 05 20 10 5 7.0 5.0 5.0 5 3 4.0 MK 51 - 20 - 20 - 08 20 20 8 24.0 4.0 5 5

The magnets are subject to corrosion in the presence of high humidity and are not resistant against acid, lye and salt. Custom dimensions to your specifications available.

ORDERING EXAMPLE Designation SAV no. - type Magnetic core SAV 240.55 - MK 50 - 02 - 02

Disc magnets /	MK 40):		Cuboid magnets MK	41:				Ring magnets	MK 4	2:							
	1	<u>ه</u>	N 				-1	v N		T	.	Ţ	N					
ØA			S	<u> </u>	A			S	ØB	-		1	s					
Disc magnets Mk	(40:			Cuboid magnets MK 4	11:				Ring magnets MK 42:									
	· 1	mm —	г kg ŋ		r	— mm		г ^k g - т			- mm ·		г kg ŋ					
Туре	Α	В	Weight	Туре	Α	В	С	Weight	Туре	Α	В	С	Weight					
MK 40 - 01 - 03	1.5	3	1	MK 41 - 02 - 02 - 01	2	2	1	0.1	MK 42 - 20 - 10 - 05	20	10	5	0.4					
MK 40 - 02 - 04	1.8	4	1	MK 41 - 03 - 03 - 02	3	3	2	0.2	MK 42 - 25 - 12 - 08	25	12	8	0.4					
MK 40 - 02 - 02	2	2	1	MK 41 - 04 - 04 - 02	4	4	2	0.3	MK 42 - 30 - 10 - 10	30	10	10	0.5					
MK 40 - 02 - 10	2	10	0.3	MK 41 - 05 - 05 - 03	5	5	3	0.6	MK 42 - 40 - 15 - 10	40	15	10	0.9					
MK 40 - 03 - 02	3	2	0.1	MK 41 - 05 - 05 - 02	5	4.5	1.5	0.3										
MK 40 - 04 - 02 MK 40 - 04 - 05	4	1.5 5	0.2 0.5	MK 41 - 06 - 03 - 01 MK 41 - 10 - 07 - 02	6 10	3 7	1 2	0.2 1.0										
MK 40 - 04 - 03 MK 40 - 05 - 02	5	2	0.3	MK 41 - 10 - 07 - 02 MK 41 - 10 - 10 - 03	10	10	3	3.0										
MK 40 - 05 - 02 MK 40 - 05 - 03	5	3	0.5	MK 41 - 12 - 09 - 03	12	9	2.5	2.0										
MK 40 - 05 - 05	5	5	0.8	MK 41 - 15 - 15 - 06	15	15	6	11.0										
MK 40 - 06 - 02	6	2	0.5	MK 41 - 16 - 12 - 03	16	12	3	5.0										
MK 40 - 06 - 04	6	4	1.0	MK 41 - 18 - 16 - 04	18	16	4	10.0										
MK 40 - 06 - 10	6	10	2.0	MK 41 - 26 - 21 - 05	26	21	5	23.0										
MK 40 - 07 - 03	7	3	1.0	MK 41 - 30 - 10 - 06	30	10	6	15.0										
MK 40 - 08 - 05	8	5	2.0	MK 41 - 30 - 20 - 10	30	20	10	50.0										
MK 40 - 10 - 03	10	3	2.0	MK 41 - 32 - 27 - 06	32	27	6	44.0										
MK 40 - 10 - 05	10	5	3.0															
MK 40 - 10 - 10	10	10	7.0															
MK 40 - 15 - 05	15	5	7.0															
MK 40 - 15 - 10	15	10	15.0															
MK 40 - 20 - 05 MK 40 - 25 - 08	20	5 8	13.0 33.0															
MK 40 - 25 - 08 MK 40 - 25 - 15	25 25	° 15	62.0															
MIX 40 - 23 - 13	23	15	02.0															
ORDERING EXAM	APLE																	
-	no ty																	
Magnetic core SAV	240.50	- MK 40 - 0	01 - 03															

202

S^{A}

MAGNETIC CORES MADE OF NdFeB

È 1.2.8 Ź 1.2.9 1.2.10

PERM

1.2.1

Ш

1.2.2

£

1.2.3

1.2.4

1.2.5

-

1.2.6

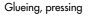
_

1.2.7

MAGNETIC CORES MADE OF NdFeB

Polymer-bonded, with high rated holding force

DESIGN


Polymer-bonded neodymium iron boron magnets are not sintered like other magnets, but the magnetic powder is mixed with epoxy resin and hot-pressed in moulds. We can machine the compression-moulded standard magnets to customer specifications while demagnetised.

Max. service temperature: 80 °C Remanence: approx. 680 mT Tolerance range: ±0.1 to 0.2 mm

MAGNET MATERIAL

Neodymium iron boron, Nd₂Fe₁₄B Polymer-bonded, isotropic magnetising

FASTENING OPTION

5.0

15.0

18.0

37.0

5

5

10

5

Disc magnets MK 60 N	Cuboid magnets MK	. 61	N	Ring magnets MK 62	N
Ø A S		A	S	ØB	니 İ s
Disc magnets MK 60:	Cuboid magnets A	AK 61:	Ring	magnets MK 62:	

iype	A	D	weigin	Type	~	D	C	weigin	Type	~	D
MK 60 - 02 - 05	2	5	0.1	MK 61 - 05 - 05 - 02	5	5	2	0.3	MK 62 - 26 - 22 - 05	26	22
MK 60 - 03 - 10	3	10	0.4	MK 61 - 10 - 05 - 05	10	5	5	2.0	MK 62 - 30 - 16 - 05	30	16
MK 60 - 04 - 10	4	10	0.8	MK 61 - 24 - 12 - 10	24	12	10	18.0	MK 62 - 35 - 21 - 05	35	21
MK 60 - 05 - 10	5	10	1.2	MK 61 - 50 - 10 - 10	50	10	10	30.0	MK 62 - 35 - 21 - 10	35	21
MK 60 - 06 - 02	6	2	0.3	MK 61 - 50 - 12 - 10	50	12	10	36.0			
MK 60 - 06 - 10	6	10	1.7	MK 61 - 30 - 30 - 10	30	30	10	54.0			
MK 60 - 08 - 03	8.5	3	1.0								
MK 60 - 10 - 05	10	5	2.0								
MK 60 - 10 - 10	10	10	5.0								
MK 60 - 13 - 05	12.5	5	4.0								
MK 60 - 13 - 10	12.5	10	7.0								
MK 60 - 15 - 03	15	3	3.0								
MK 60 - 20 - 08	20	7.7	15.0								
MK 60 - 25 - 05	25	5	15.0								

NOTE:

The magnetic capacity is not weakened even in case of strong opposing fields. Can be used without surface protection under normal ambient temperatures at a relative humidity of up to 50% (no condensation). Custom dimensions not possible.

ORDERING EXAMPLE Designation SAV no. - type Magnetic core SAV 240.56 - MK 60 - 02 - 05

FLEXIBLE PERMANENT MAGNETS Easy to machine

APPLICATION

Bending produces ring magnets which are used for small DC motors by inserting them into the stator sleeve. Axially magnetised rings or discs can be punched out of strips. Holding magnet bars can be manufactured with excellent holding forces in any length. To achieve this, flexible magnet strips are placed between two flat pieces of iron (sandwich system, see drawing). They are attached using glueing or pressing. Easy to machine with normal tools.

DESIGN

Improved magnetic capacity through lengthwise alignment of the crystals in the magnetic field (anisotropy). Resistant to demagnetising, ageing-resistant.

MAGNET MATERIAL Hard ferrite, polymer-bonded

- Max. service temperature: 85 °C
- Max. bending radius: 8 x thickness
- Hardness: 90 100 Shore
 - Density: 3.7 g/cm³

CHEMICAL RESISTANCE

by mineral oil, weak acid and lye, kerosene and glycol. Slightly affected by nitric acid. Swelling caused by petrol, acetone, alcohol (90%). Dissolved by benzene, chlorinated solvents.

	ſ	mm	
Туре	Thickness ±0.15	Width ±0.25	Length ±0.50
MF 10 - 03	3	25	200
MF 10 - 05	5	25	200
MF 10 - 06	6	30	200
MF 10 - 08 - 30	8	30	200
MF 10 - 08 - 09	8	9	250
MF 10 - 08 - 24	8	24	500
ORDERING EXAN	APLE		
Designation	SAV no	type	
Flexible permanent m	nagnet SAV 240	.70 - MF 10 - 06	

SAV 240.72

MAGNETIC TAPES Self-adhesive

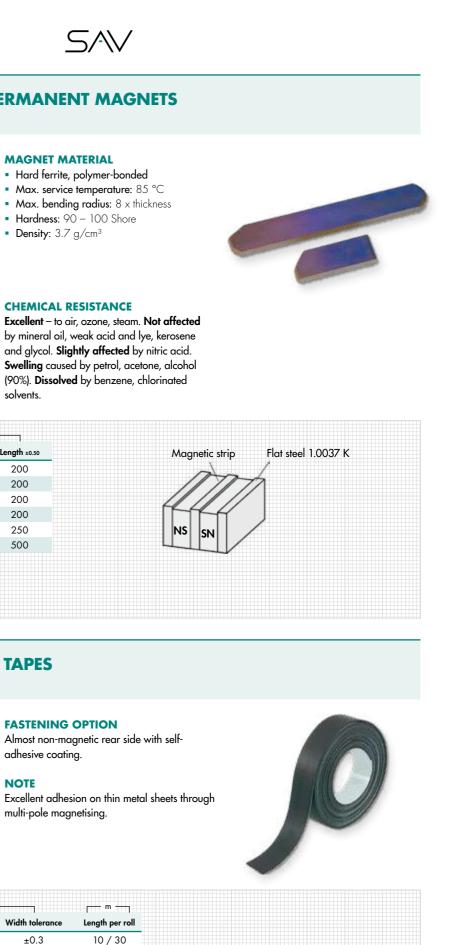
DESIGN

Improved rated holding force through alignment of the crystals, magnetised on one side. dark brown with smooth surface, can be cut with scissors. The displacement force is approx. 1/3 of the rated holding force.

FASTENING OPTION

Almost non-magnetic rear side with selfadhesive coating.

NOTE


Excellent adhesion on thin metal sheets through multi-pole magnetising.

Max. service temperature: 75 °C Rated holding force: 0.8 N/cm²

Ħ	Туре	Width	Thickness	Width tolerance	Length per re
	MB 60 - 12*	12.7	1.5	±0.3	10 / 30
	MB 60 - 20	20	1.5	±0.3	10 / 30
	MB 60 - 25*	25.4	1.6	±0.3	10 / 30

*Also available in a version where the magnetic tape is magnetised in such a way that 2 tapes can be stacked exactly. In this case, a set of 2 rolls is supplied, one as version A and one as version B.

ORDERING EXAMPLE Designation SAV no. - type Magnetic tape SAV 240.72 - MB 60 - 12

1.2.10

PERM

1.2.1

1.2.2

8

1.2.3

1.2.4

1.2.5

1.2.6

_

1.2.7

Ì

1.2.8

1.2.9

MAGNETIC TAPES Can be cut with scissors, adhesive on one side

DESIGN

Polymer-bonded magnet, can be cut with scissors.

FASTENING OPTION

Magnetic tapes. Type MB 51 with almost non-magnetic rear side and self-adhesive coating.

		<u>г</u> т т	m —	г— m — ј
Magnetic tape, coloured MB 50: black (SW), white (WS), red (RT), blue (BL),	Туре	Width	Thick- ness	Length per roll
green (GR), yellow (GB)	MB 50 - 10	10	0.8	10
	MB 50 - 15	15	0.8	10
	MB 50 - 20	20	0.8	10
	MB 50 - 25	25	0.8	10
	MB 50 - 30	30	0.8	10
	MB 50 - 35	35	0.8	10
	MB 50 - 40	40	0.8	10
	MB 50 - 50	50	0.8	10
	MB 50 - 60	60	0.8	10
	MB 50 - 70	70	0.8	10
ORDERING EXAMPLE	MB 50 - 80	80	0.8	10
Designation SAV no type - colour	MB 50 - 90	90	0.8	10
Magnetic tape SAV 240.71 - MB 50 - 10 - SW	MB 50 - 100	100	0.8	10

SAV 240.71

MAGNETIC TAPES

Can be cut with scissors, adhesive on one side

DESIGN

Polymer-bonded magnet, can be cut with scissors.

FASTENING OPTION

Magnetic tapes. Type MB 51 with almost non-magnetic rear side and self-adhesive coating.

Magnetic tape Flexible magne		
Туре	ر ^{mm} ر	r m Length per roll
MB 54 - 10	10	50
MB 54 - 15	15	50
MB 54 - 20	20	50
MB 54 - 25	25	50
MB 54 - 30	30	50
MB 54 - 40	40	50
MB 54 - 50	50	50

SAV 240.73

MAGNETIC FILMS In different colours

DESIGN

COLOURS

Plain; with coloured vinyl layer (A) or with self-adhesive (SK). On request, magnetic film can be cut as required or punched out in the desired shape.

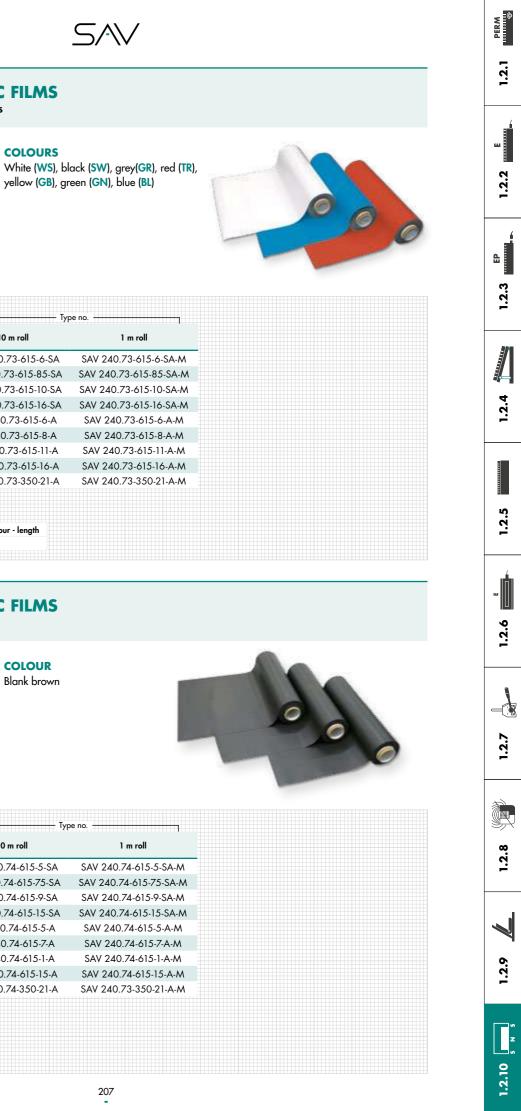
mm [
Width	Thick- ness	10 m roll	1 m
	0.6	SAV 240.73-615-6-SA	SAV 240.73-
	0.85	SAV 240.73-615-85-SA	SAV 240.73-0
	1	SAV 240.73-615-10-SA	SAV 240.73-
(15	1.6	SAV 240.73-615-16-SA	SAV 240.73-
015	0.6	SAV 240.73-615-6-A	SAV 240.73
	0.8	SAV 240.73-615-8-A	SAV 240.73
	1.1	SAV 240.73-615-11-A	SAV 240.73
	1.6	SAV 240.73-615-16-A	SAV 240.73
350	2.1	SAV 240.73-350-21-A	SAV 240.73
	615	Width ness 0.6 0.85 1 1.6 615 0.6 0.8 1.1 1.6 1.6	Width ness 10 m roll 0.6 SAV 240.73-615-6-SA 0.85 SAV 240.73-615-85-SA 1 SAV 240.73-615-85-SA 1.6 SAV 240.73-615-10-SA 0.6 SAV 240.73-615-10-SA 0.6 SAV 240.73-615-16-SA 0.6 SAV 240.73-615-6-A 0.8 SAV 240.73-615-8-A 1.1 SAV 240.73-615-11-A 1.6 SAV 240.73-615-11-A 1.6 SAV 240.73-615-16-A

Designation SAV no. - width x thickness - version - colour - length

Magnetic film SAV 240.73 - 615 x 16 - A - WS - M

SAV 240.74

MAGNETIC FILMS In blank brown


DESIGN

Plain; without vinyl (A), without self-adhesive (SK). Magnetic film is also available by the metre.

COLOUR

Blank brown

		m	im —	Г Тур	be no
Qualit	İγ	Width	Thick- ness	10 m roll	1 m rc
Semi-anisa	otropic		0.5	SAV 240.74-615-5-SA	SAV 240.74-6
Semi-anisa	emi-anisotropic		0.75	SAV 240.74-615-75-SA	SAV 240.74-61
Semi-anisa	Semi-anisotropic		0.9	SAV 240.74-615-9-SA	SAV 240.74-6
Semi-anisotropic		615	1.5	SAV 240.74-615-15-SA	SAV 240.74-61
Anisotro	Anisotropic Anisotropic		0.5	SAV 240.74-615-5-A	SAV 240.74-6
Anisotro			0.75	SAV 240.74-615-7-A	SAV 240.74-6
Anisotro	opic		0.9	SAV 240.74-615-1-A	SAV 240.74-6
Anisotro	opic		1.5	SAV 240.74-615-15-A	SAV 240.74-6
Anisotro	opic	350	2.1	SAV 240.74-350-21-A	SAV 240.73-3
	EXAMPLE				
Designation	SAV no	width x th	ickness -	version	
Magnetic film	SAV 240.	74 - 615 x	15 - A		

With plastic housing

OFFICE MAGNETS

DESIGN

Strong layered magnet with plastic housing, max. service temperature: 50 °C.

MAGNET MATERIAL

Hard ferrite, anisotropic

Available in 4 versions: Type MO 10 - 01 with eyebolt, white. Type MO 10 - 02 with hook, white. Type MO 10 - 03 with threaded stud M6, black. Type MO 10 - 04 with internal thread M6, black.

Type MO 10 - 01

Type MO 10 - 03

Туре МО 10 - 02

Type MO 10 - 04

SAV 240.83

OFFICE MAGNETS With steel housing

DESIGN

Flat pot magnet with eye bolt or hook (MO 20 – 80). Steel housing, painted white. Custom colours available from 1000 units without surcharge.

APPLICATION

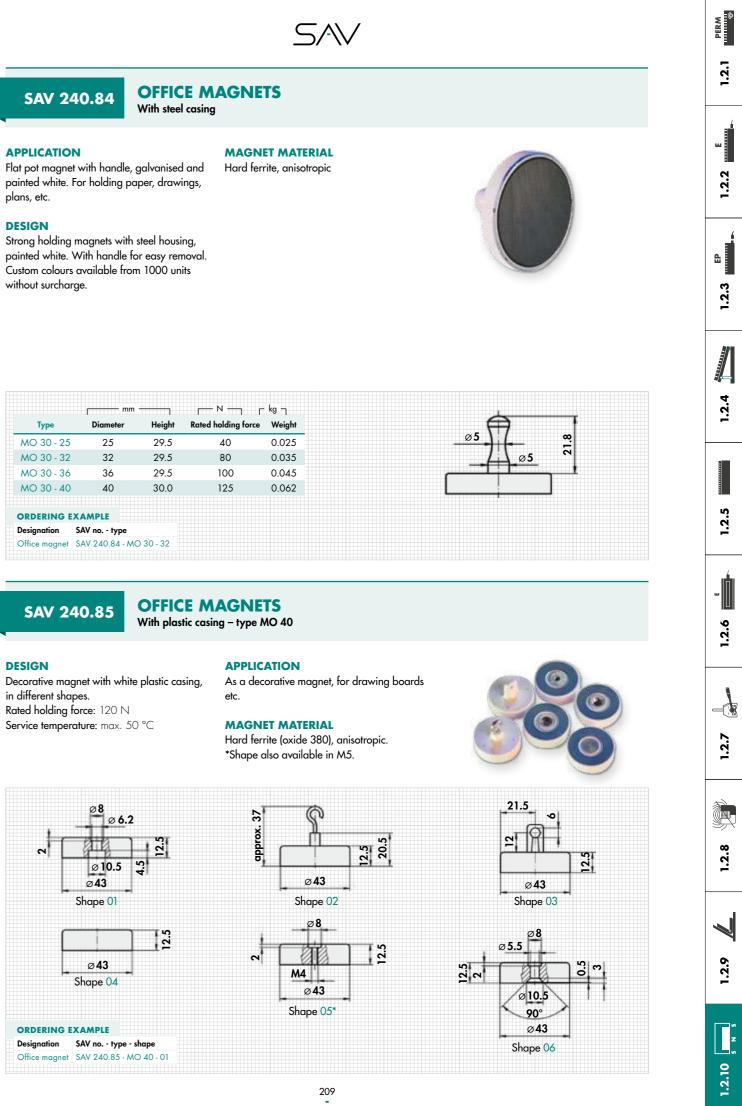
As a decorative magnet

MAGNET MATERIAL Hard ferrite, anisotropic

	mm		г N	⊢ kg ⊣
Туре	Diameter	Hook	Rated holding force	Weight
MO 20 - 16	16	M 3	18	0.007
MO 20 - 20	20	M 3	30	0.012
MO 20 - 25	25	M 4	40	0.023
MO 20 - 32	32	M 4	80	0.034
MO 20 - 36	36	M 4	100	0.045
MO 20 - 40	40	M 4	125	0.059
MO 20 - 47	47	M 4	180	0.089
MO 20 - 50	50	M 4	220	0.107
MO 20 - 57	57	M 4	280	0.149
MO 20 - 63	63	M 4	350	0.233
MO 20 - 80	80	Eyebolt M6	600	0.485
RDERING EX				
	AV no type AV 240.83 - M			

APPLICATION

painted white. For holding paper, drawings,


Custom colours available from 1000 units without surcharge.

	[mm		г N Г	kg ¬
Туре	Diameter	Height	Rated holding force	Weight
MO 30 - 25	25	29.5	40	0.025
MO 30 - 32	32	29.5	80	0.035
MO 30 - 36	36	29.5	100	0.045
MO 30 - 40	40	30.0	125	0.062

Designation SAV no. - type

in different shapes. Rated holding force: 120 N

etc.

APPLICATION

For holding paper, drawings, plans. For marking, e.g. on planning boards and noticeboards.

DESIGN

Strong holding magnets with an attractive plastic cap. Round versions with contoured edge for easy removal. The flat surface of the plastic housing can be screen-printed for advertising purposes.

Please send us your request.

	mm	1	г— N — ,
Туре	Diameter	Height	Rated holding force
MO 50 - 10 - 1	ø 10	6.5	0.7
MO 50 - 10 - 2	ø 10	6.5	1.5
MO 50 - 16	ø 16	7	1.3
MO 50 - 20	ø 20	7.5	1.5
MO 50 - 25	ø 25	7.5	3
MO 50 - 30	ø 30	8	6
MO 50 - 36*	ø 36	8.5	9.5
MO 50 - 11	11 x 11	6.5	1.5
MO 50 - 35	35 x 35	9	6
MO 50 - 21	21 x 12.5	6.5	1.5
MO 50 - 37	37 x 22	7.5	4.5
MO 50 - 55	55 x 22.5	8.5	7

MAGNET MATERIAL

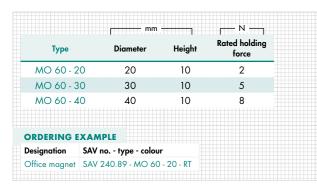
OFFICE MAGNETS

Suitable for printing

Hard ferrite, isotropic/anisotropic

-	N
nt	Rated holding force
5	0.7
5	1.5
	1.3
5	1.5
5	3
	6
;	9.5
5	1.5
	6
5	1.5
5	4.5
5	7

SAV 240.89


APPLICATION

For holding paper, drawings, plans, etc. For marking, e.g. on planning boards and noticeboards.

DESIGN

Strong holding magnets with an attractive plastic cap. Body made of high-quality ABS with slightly curved surface. Profiled edge for easy removal.

The flat surface of the plastic housing can be screen-printed for advertising purposes. Please send us your request.

MAGNET MATERIAL

Hard ferrite, isotropic/anisotropic

AVAILABLE COLOURS

Red (RT), blue (BL), green (GN), yellow (GB), black (SW), white (WS), orange (OR), mustard (SN)

NOTE

OFFICE MAGNETS

Suitable for printing

Minimum order quantity with print: 300 units Packaging unit per colour: 10 units

SAV 240.90

OFFICE MAGNETS

With raised pattern - type MO 70 (customised)

SHAPE

DESIGN

B: round, ø 36 mm

1: smooth, without print

3: with direct printing

D: square, 36 mm

APPLICATION

For holding paper, drawings, plans, etc. For marking, e.g. on planning boards and noticeboards.

DESIGN

Strong holding magnets with plastic housing. The print can be your company logo or a design of your choice. Please state the desired design when ordering. The following versions are available: Height: 13 mm Holding force: 36 N at ø 36 mm Weight: 0.040 kg

AVAILABLE COLOURS Red (RT), blue (BL), green (GN),

4: with raised printed design

yellow (GB), white (WS)

MAGNET MATERIAL

Hard ferrite (oxide 380)

NOTE

Minimum order quantity with print: 300 units Packaging unit per colour: 10 units

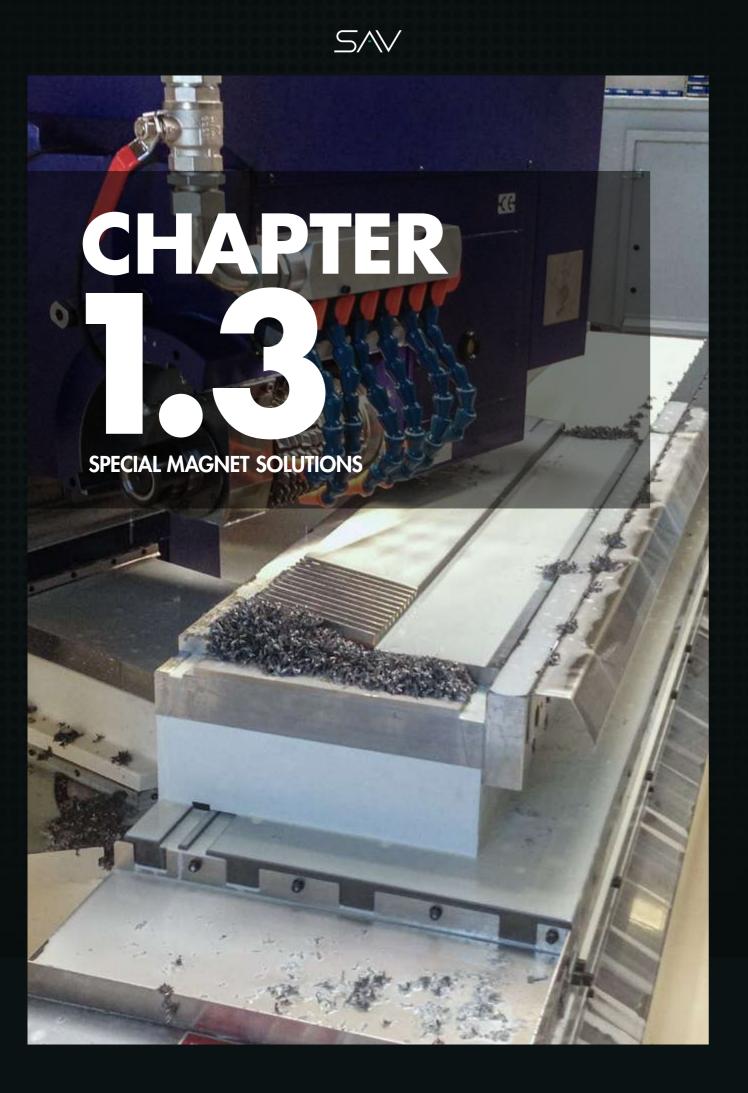
ORDERING EXAMPLE Designation SAV no. - type - shape - design - colour Office magnet SAV 240.90 - MO 70 - B - 3 - WS

OFFICE MAGNETS

TO KEEP YOUR ADVERTISING IN **VIEW AT ALL TIMES...**

Our office magnets can help you to keep your company visible everywhere. The magnets are versatile and attractive. Attach drawings, notifications and plans quickly and reliably, at the office, workshop, public institutions etc.

ALWAYS FIRMLY ATTACHED...


The holding magnets consist of strong magnetic elements in attractive plastic or steel housings. Some of the plastic housings are available printed or with a raised design, to your specifications. You will be sure to find the right version - whether with eye bolt, hook, threaded stud or a simple smooth print.

FREE DESIGN CHOICES...

Prints and raised designs can be implemented based on your design ideas, from a template or with support from SAV. Attractive packaging types and sizes are possible.

210

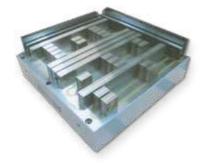
1. MAGNET SYSTEMS 1.3 **SPECIAL MAGNET SOLUTIONS**

	DESIGNATION	PAGE
1.3.1	Criteria for combined solutions	214
1.3.2	Combined solutions	215
1.3.3	Special solutions for milling	228
1.3.4	Special solutions for milling railway points	238
1.3.5	Special solutions for precision milling	242
1.3.6	Special solutions for linear guideways	244
1.3.7	Special solutions for swivel bridge and index table	247
1.3.8	Special solutions for precision sine tables	248
1.3.9	Special round magnets for grinding and hard turning	253
1.3.10	Special solutions for non-subtractive processes	265
1.3.11	Demagnetisers – special versions	266

 $S \wedge V$

power. people. passion.

-1€ 1:3


CRITERIA FOR COMBINED SOLUTIONS 1.3.1

Different workholding principles have different advantages and disadvantages. Different combinations can be used to find solutions even for difficult workholding problems, expand machining options and extend the range of workpieces that can be processed.

MAGNETIC CHARACTERISTICS

- Only for ferromagnetic workpieces
- The holding force is (physically) limited
- High normal force, low tangential force
- Two-dimensional force transmission
- Holding down of thin, uneven workpieces
- High damping
- Good accessibility, easy to clean, easy to automate
- Large range of workpieces
- Chucking without distortion

- Complete support for the workpiece
- (high damping, high precision) Machining from several sides in one chucking position
- Compact design
- Short changeover times
- Ergonomic and reliable, wear-free Cost-efficient compared to force-
- actuated workholding

HYDRAULIC/MECHANICAL CHARACTERISTICS

- Suitable for all workpieces
- High to very high force density
- Concentrated force transmission
- High force density
- Low-distortion chucking of blanks
- Also for non-magnetic workpieces
- Low damping

- Limited accessibility and cleaning
- Risk of workpiece deformation and damage
- Limited range of workpieces More complex systems, including with corresponding power supply

VACUUM SYSTEM CHARACTERISTICS

- Also for non-magnetic workpieces
- Two-dimensional force transmission
- Low force density, holding force physically limited
- Good damping
- Also for machining from several sides
- Easy to clean
- Reliable and wear-free

PNEUMATIC CHARACTERISTICS

- Concentrated force transmission
- Lower force density compared to hydraulics
- Low-distortion chucking of blanks
- Also for non-magnetic workpieces
- Low damping
- Limited accessibility and cleaning
- Limited range of workpieces

- Energy supply simpler compared to hydraulics
- More cost efficient compared to hydraulics

Large workholding elements

- More complex systems

1.3.2

MAGNETIC-PNEUMATIC FIXTURE

For laser welding

SIZE 1320 x 1100 mm

WORKPIECE Heat exchanger

APPLICATION Laser welding

DESCRIPTION

- Amplified electro magnet system
- With compressed air release
- Pneumatic clamps on the circumference
- On movable base structure

ELECTRO PERMANENT MAGNETIC WELDING FIXTURE For laser welding

SIZE 1500 x 1500 mm

WORKPIECE Passenger car tailgate

APPLICATION Laser cutting and welding of tailored blanks

DESCRIPTION

Pneumatically opening magnetic fixture, cutting of the welding edge and welding in one chucking process

ELECTRICAL CHARACTERISTICS

- Very flexible and comfortable control
- Can be largely automated

COMBINED SOLUTIONS

MULTIFUNCTION WORKHOLDING FIXTURE

Combination of all workholding principles

SIZE 2800 x 1030 mm

WORKPIECE Workpieces for packaging machines

APPLICATION

Milling

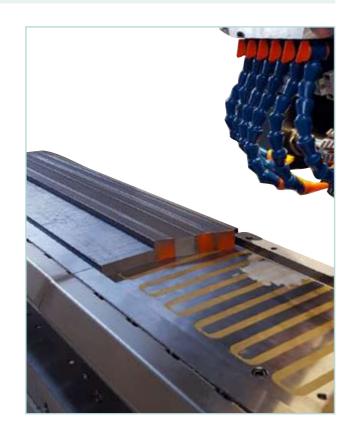
DESCRIPTION

- Combination magnetic hydraulic mechanical – vacuum technology
- Electro permanent high-energy magnets with pole raisers
- Hydro vices with large front areaGrid workholding system for
- modular fixture system • Vacuum workholding plate with grid
- Control with multifunction operating panel

HIGH-ENERGY MILLING MAGNET

With hydraulic workholding elements

SIZE 2400 x 530 mm


WORKPIECE Racks

APPLICATION Milling of the toothing

DESCRIPTION

- High-energy magnet system
- In combination with stops and hydraulic chucking elements

MAGNETIC-HYDRAULIC WORKHOLDING SYSTEM

Flexibility for heavy machining

SIZE

1000 x 1000 mm

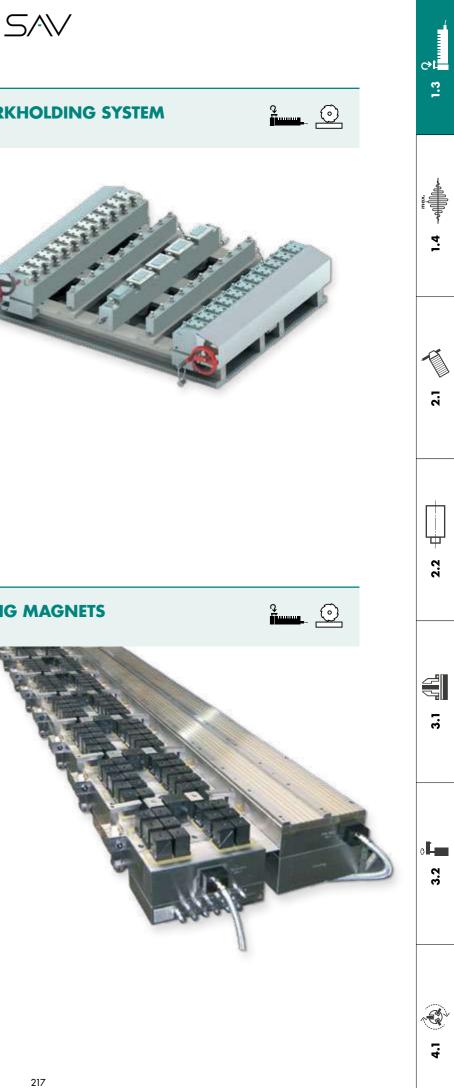
WORKPIECE Precision plates

APPLICATION Surface milling and face milling

DESCRIPTION

- Magnetic/hydraulic combination
- High-energy magnetic chucks, heightadjustable, hydraulic clamping
- Additional hydraulic support elements and side tension
- Bar structure, longitudinal adjustment

SIZE 4260 x 753 mm


WORKPIECE Racks

APPLICATION 5-sided milling in 2 chucking processes

- · First chucking in two rows in conjunction with individually activated hydro chucks. Magnetic base chucking using rigid and movable pole shoes
- Second chucking with direct contact with magnetically active side stops

COMBINED FIXTURE

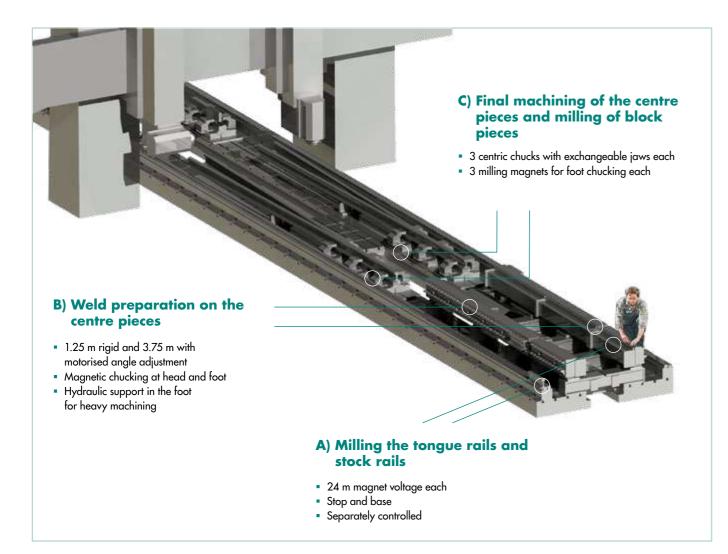
For magnetic – hydraulic – electromotor chucking of railway rails

;_____

Length 24 m

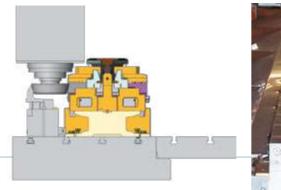
WORKPIECES

- Tongue rails and stock rails
- Centre pieces
- Block pieces

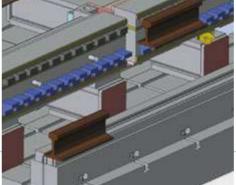

APPLICATION

Milling for railway rail manufacturing

DESCRIPTION


- Designed for extreme machining
- Combination of magnetic, hydraulic and electro-motor principles
- Touch screen operation, radio remote controlled
- Machine power 2 x 100 kW for workpiece positioning
- Exchangeable pole bars to create free space for tools

A) MILLING OF TONGUE RAILS AND STOCK RAILS TO 2 X 24 M LENGTH


- Amplified high-energy system Plug-in pole bars
 - - Head and foot machining and drilling

B) WELD PREPARATION ON THE CENTRE PIECES TO 2 X 5 M LENGTH

- Electric angle adjustment
- High-energy system for extreme machining (half rail profile)
- Hydraulic support elements as special version for contact with the foot

C) FINAL MACHINING OF THE CENTRE PIECES

- Hydro vices as special version with large projection
- Stocks with quick-change system

Pole blocks for contact with the head

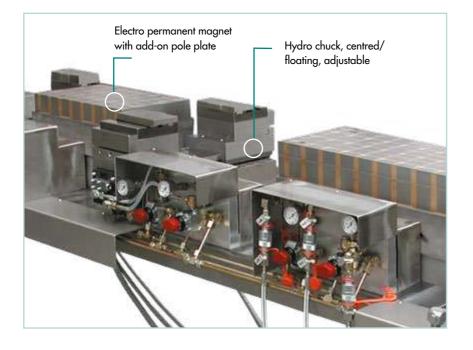
Magnet system for chucking on the foot

C>I 1.3 1.4 1 2.1 2.2 3.1 c-L 3.2

MAGNETIC-HYDRAULIC FIXTURE

Flexible for large chucking areas/extreme machining

SIZE


System length 12 m

WORKPIECE Block ends

APPLICATION Extreme machining

DESCRIPTION

- Chucking and damping using high-energy magnets
- Centring and chucking of the thin sections with hydro chuck, centred and floating

₫

MAGNETIC-HYDRAULIC MILLING FIXTURE

For flexible railway point manufacturing

SIZE 8000 x 1200 mm

WORKPIECE Railway rails

APPLICATION Heavy milling

DESCRIPTION

Magnetic/hydraulic combination

- For different rail profiles on 2 levels and on 2 lines
- 3 m adjustable angle with electric motor

MAGNETIC-HYDRAULIC FIXTURE

For chucking rail profiles sensitive to bending

SIZE System length 8.5 m

WORKPIECE Tongue rails and stock rails

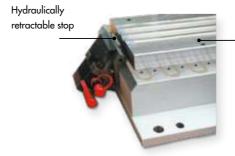
APPLICATION Extreme milling

DESCRIPTION

- Magnetic chucking on the foot downwards and to the side
- Optional chucking on the web at the side with exchangeable pole bar
- Solid hydraulic swivel chucks as special version for chucking on foot or web
- Machining in one cut with diameter 60 x 35 mm
- Machine power 2 x 75 kW

HIGH-ENERGY MILLING MAGNET With pole plate for thin parts

SIZE 1725 x 300 mm

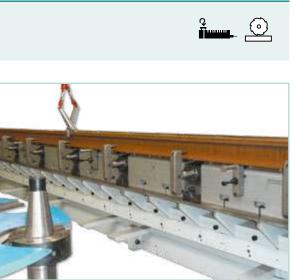

WORKPIECE Doctor blades for printing machines

APPLICATION Milling of thin parts

DESCRIPTION

High-energy magnet with 33 mm transverse pole pitch

- Profiled chuck blocks with fine
- divisions for low field heights
- Lowering hydraulic stop



Exchangeable pole plate 4 mm transverse pole pitch For milling thin strips

220

C≯I 1.3 alline. Ч. 4 1 2.1 2.2 IJŊ. 3.1

с**Ļ** 3.2

With hydraulic stops

SIZE

2000 x 157 mm Total system 2 x 6 m on swivel bridge

WORKPIECE

Linear guideways

APPLICATION

Grinding of the guide tracks

DESCRIPTION

- 2 x 3 magnets on horizontal swivel bridge
- With hydraulic swivel chucks for workpiece positioning
- Exchangeable pole bars to create free space for tools

MAGNET VACUUM CLAMPING STRIP

For blade machining

SIZE

750 x 100 mm

WORKPIECE Tungsten carbide blades

APPLICATION Grinding

DESCRIPTION

- High-energy magnet system with longitudinal pole pitch
- Vacuum system in the pole gap

ELECTRO PERMANENT MAGNETIC CHUCK WITH ZERO-POINT SYSTEM

Exchangeable pole plates

SIZE 400 x 230 mm

WORKPIECE

Lamella-shaped slides for textile machines

APPLICATION Profile grinding

DESCRIPTION

- Magnet system with integrated zeropoint workholding system
- Workpiece held in profiled exchangeable pole plate
- Weight-optimised pallet can be loaded outside of the machine

MAGNETIC-PNEUMATIC-HYDRAULIC FIXTURE

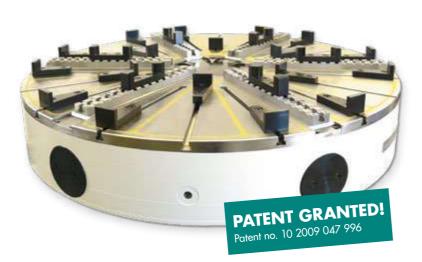
Individual for our customers

SIZE Length 800 mm

WORKPIECE Thin blades

APPLICATION Grinding

- Damping with fine pole magnet
- Pneumatic actuation
- Hydraulic chucking and locking


MECHATRONIC CHUCK Fully electric workholding fixture

APPLICATION

- For automation
- Precise centring, reproducible with high accuracy
- High-performance machining and finishing
- Combination of first and second chucking
- Radial and/or axial chucking
- Chucking of eccentric parts

COMBINATION OF ROUND MAGNET AND **ELECTRIC LINEAR AXES**

- Servo drive with integrated brakes
- 300 daN holding force per actuator at D 1000 mm
- Direct measuring system with 0.001 mm resolution
- 50 mm chucking travel with quick-change jaws
- Electronic compensation of centrifugal force
- Amplified magnet system with optimised pole division
- Magnet material under each pole for minimum field heights
- 350 mm minimum magnetic range
- Smallest possible chuck diameter 800 mm
- at 100 daN holding force per jaw
- With 165 mm minimum height

VARIANT A • 3 axes centric • 3 axes applied inside or outside

 6 axes centric Applied inside or outside

VARIANT C Chucking of out-of-round parts

VARIANT D

- Manual workpiece alignment
- with dial gauge
- Magnetic pre-clamping
- 6 axes applied and clamped individually

VARIANT E

• 2 opposite axes each, centric

VARIANT F Chucking of eccentric and clampable parts for alternating alignment with the spindle

ELECTRO PERMANENT COMBINATION CHUCK

Mechanical and magnetic chucking

SIZE

1500 mm diameter

WORKPIECE Rings and plates

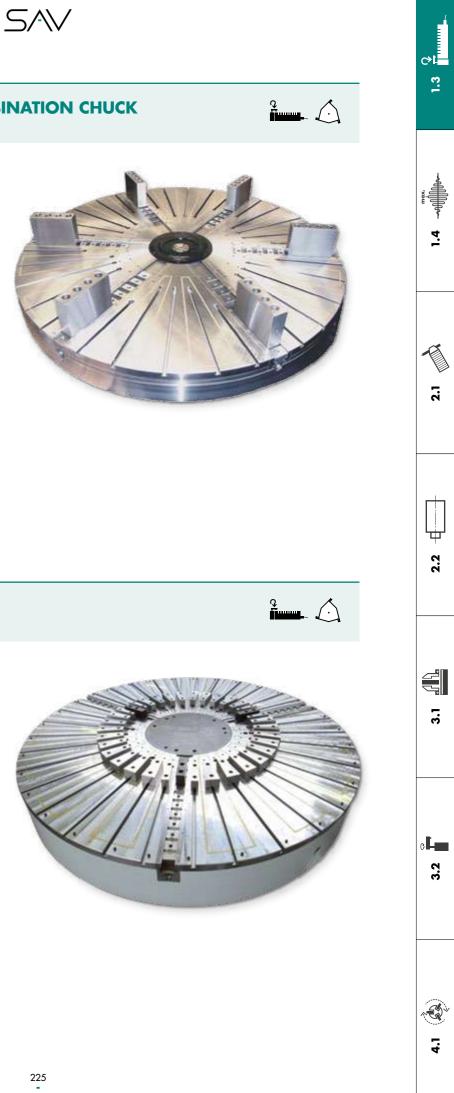
APPLICATION Turning

DESCRIPTION

- Amplified electro permanent magnetic system
- With 6 individually adjustable Wescott jaw systems
- Electrical connection integrated with slip ring assembly

COMBINATION CHUCK Mechanical centring, magnetic chucking

SIZE 1500 mm diameter


WORKPIECE Rolling bearing rings

APPLICATION Turning

- Amplified electro permanent magnetic system
- With integrated centring chuck and additional adjustable jaws
- Electrical connection with heavy-duty power connector

SPECIAL COMBINATION CHUCK

The magnet as a machine table

SIZE

1500 mm diameter

WORKPIECE

Mechanical seals

APPLICATION

Grinding

DESCRIPTION

- Electro permanent round magnet with hydro couplings as a table
- Hydraulic top-mounted fixture with large adjustment range
- Combination chucking axial and/or radial
- Sensitive axial support64-fold oil distributor

SIZE

350 mm diameter

WORKPIECE

Passenger car gearbox parts

APPLICATION

Cylindrical grinding

DESCRIPTION

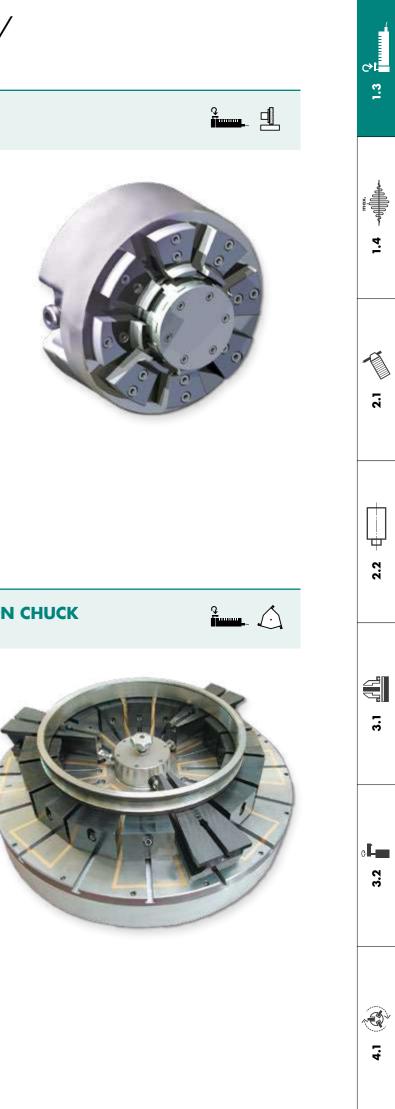
- Sensitive centring in the centroid
- Chucking with electro permanent circular magnet
- Pole raisers to create free space for tools

ELECTRO PERMANENT COMBINATION CHUCK With centring device

SIZE

640 mm diameter

WORKPIECE


Rings for high-precision aerospace bearings

APPLICATION Hard turning

- 3-point centring device
- Height compensation using sensitive, movable pole shoes, individually chucked
- Model year 1998:
- first combination (hybrid) chuck on the market

1.3.3 **SPECIAL SOLUTIONS FOR MILLING**

For hard milling

SIZE 1400 x 1400 mm

WORKPIECE Dies for crankshafts

APPLICATION

Hard milling of the mould cavities

DESCRIPTION

- 4 magnet sides with 2 active magnets each
- Wear protection with pole bars
- Electrical connection with heavy-duty power connector for rotary table

HIGH-ENERGY MILLING MAGNET

For machining from 5 sides

SIZE 1900 x 750 mm

WORKPIECE Front plates for forklifts

APPLICATION Milling from 5 sides Including the openings

DESCRIPTION

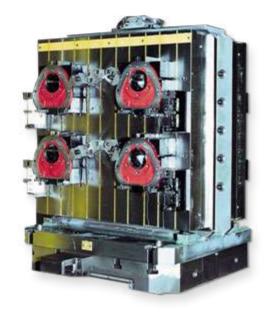
- Powerful neodymium magnet system
- Pole bars to create free space for tools
- Folding stops with position monitoring

ELECTRO PERMANENT MAGNETIC PALLET

For milling sealing surfaces

SIZE 1000 x 1000 mm

WORKPIECE


Gearbox cover made of grey-cast iron

APPLICATION

Drilling and milling of sealing edges

DESCRIPTION

- First chucking with movable pole shoes and support elements
- Second chucking on rigid pole bars for generating exact parallelism

 $\textcircled{\bigcirc}$

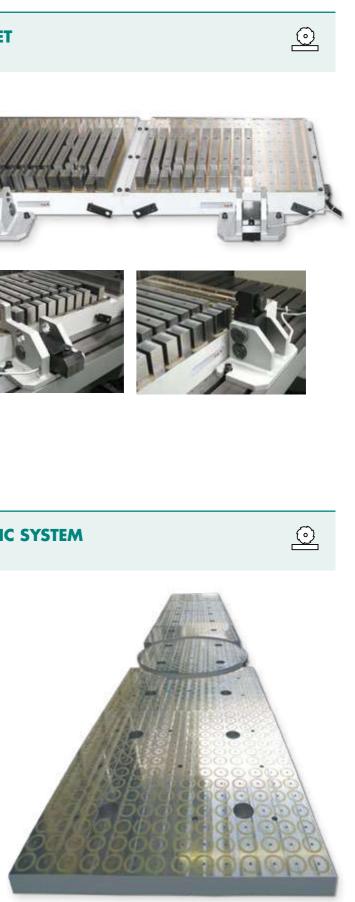
 $\textcircled{\bigcirc}$

ELECTRO PERMANENT MAGNETIC SYSTEM

Efficient workholding fixture for large machines

SIZE

7000 x 1200 mm


WORKPIECE Steel plates

APPLICATION

Weld preparation with a variety of different contours

DESCRIPTION

- Amplified magnet system with demagnetising
- Rotary table integrated
- Through holes for zero point workholding system
- Pole rounds to create free space for tools

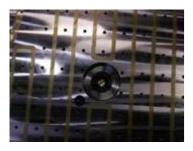
 S^{A}

1.3 alline. 1.4 1 2.1 2.2 IJŊ. 3.1 c-3.2 4.1

C>I

ELECTRO PERMANENT MILLING MAGNET

With integrated rotary table


SIZE 5000 x 800 mm

WORKPIECE Plates with 20 mm thickness

APPLICATION Weld preparation and contour milling

DESCRIPTION

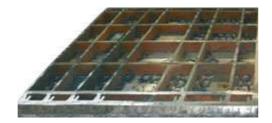
- High-energy magnet system 55 mm transverse pole pitch
- Integrated rotary table
- With integrated zero point workholding system

ELECTRO PERMANENT MAGNETIC CHUCK

With circular pole pitch

SIZE 1800 x 1470 mm

WORKPIECE


Variety of different contours From grates to thin plates

APPLICATION Milling from 5 sides

DESCRIPTION

The low magnetic field and the universal pole pitch allow machining of a variety of different workpiece contours

Flexibility also for difficult workpiece contours

SIZE 2000 x 1400 mm

WORKPIECE Machine side parts

APPLICATION Face milling and contour milling

DESCRIPTION

- Amplified magnet system with demagnetising cycle
 Chucking bracket with 2 chucking sides
- First chucking with movable pole shoes
- Second chucking with rigid pole bars

ELECTRO MAGNETIC SYSTEM For extreme material removal

SIZE 7800 x 1200 mm

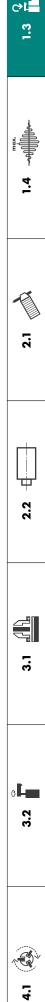
WORKPIECE Slabs

APPLICATION Heavy milling with 2 heads simultaneously

DESCRIPTION

- Electromagnet system for extreme
- air gaps up to 15 mm
- Cutting depth ap = 7 mm
- Combination with hydr. stops

$\textcircled{\bigcirc}$


 $\textcircled{\bigcirc}$

 $\textcircled{\bigcirc}$

For small workpieces

SIZE 400 x 300 mm

WORKPIECE Notched impact samples

APPLICATION Milling of 4 sides

DESCRIPTION

- Amplified electro permanent magnetic system
- Magnetically active stops
- Exchangeable pole plate for chucking different cross-sections

ELECTRO PERMANENT CIRCULAR MAGNET

For heavy 5-axis machining

SIZE

 $\textcircled{\bigcirc}$

 $\textcircled{\bigcirc}$

600 mm diameter

WORKPIECE Plate materials

APPLICATION 5-axis machining

DESCRIPTION

- Amplified high-energy system55 mm transverse pole pitch
- Electrical connection with heavy-
- duty power connector

ELECTRO PERMANENT MAGNETIC PALLET For 5-axis machining

SIZE 680 mm diameter

WORKPIECE Plates with 15 mm thickness

APPLICATION 5-axis machining

DESCRIPTION

- High-energy system with 55 mm parallel pole pitch
- Electrical connection with connector
- Pole rounds to create free space for tools

ELECTRO PERMANENT MAGNET Pole bars to create free space for tools

SIZE 630 x 430 mm

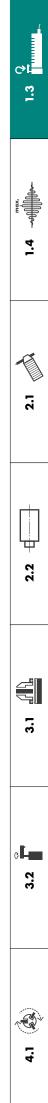
WORKPIECE

Small plates with openings

APPLICATION

Milling of flat surfaces and openings

- High-energy magnet with narrow pole pitch for high forces and small contact surface
- Pole bars with stops to create free space for tools and for positioning



For very small parts

SIZE 400 x 355 mm

WORKPIECE Small cubes

APPLICATION Face milling on both sides

DESCRIPTION

- Neodymium magnet system with maximum magnetic workpiece contact surfaces
- Workpiece positioning and holding force increase with magnetically active stops

 $\textcircled{\bigcirc}$

 $\textcircled{\bigcirc}$

ELECTRO PERMANENT MAGNETIC CHUCK Amplified system

SIZE 300 x 150 mm

WORKPIECE Notched impact samples

APPLICATION Milling of the sample notch

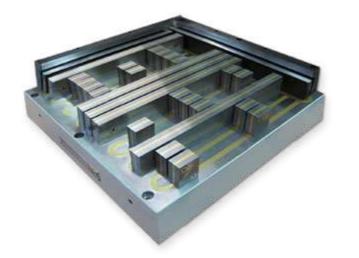
DESCRIPTION

Strong electro permanent magnet with solid stops

HIGH-ENERGY MAGNETIC CHUCK

With active workpiece positioning in 3 directions

SIZE 630 x 430 mm


WORKPIECE

Tool base plates with openings

APPLICATION Milling of flat surfaces and openings

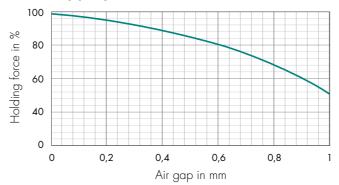
DESCRIPTION

- High-energy magnet with narrow pole pitch for high forces and small contact surface
- Workpiece positioning using 2 magnetically active stops in X and Y
- Flexibly movable pole bars and pole blocks to create free space for tools

ELECTRO PERMANENT MAGNETIC CHUCKS

With extreme field strength for large air gaps

SIZE 900 x 600 mm each

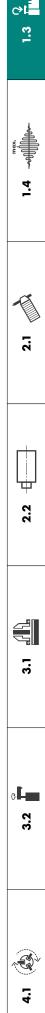

WORKPIECE Pole plates for presses

APPLICATION Heavy milling with extreme air gaps

DESCRIPTION


- Amplified magnet system with demagnetising cycle
- Heavy-duty stops can be folded down for 5-sided machining

Air gap diagram for full contact



With combined pole pitch

SIZE 2100 x 940 mm

WORKPIECE

Precision plates and bars

APPLICATION Face milling

DESCRIPTION

- Amplified high-energy systemModule pole pitch 140 x 105
- mm for large plates
- Parallel pole pitch 27.5 mm for thin bars

ELECTRO PERMANENT MAGNETIC INDEX TABLE

With extreme holding forces

SIZE 800 x 590 mm

 $\textcircled{\bigcirc}$

 \bigcirc

WORKPIECE Side plates for special-purpose vehicles

APPLICATION

Milling with high workpiece projection and drilling

DESCRIPTION

- High-energy system with 55 mm transverse pole pitch
- With exchangeable grates as add-on element for free tool running when drilling for thin bars

ELECTRO PERMANENT MAGNETIC PALLET

Completely automated

SIZE 500 x 300 mm

WORKPIECE

Leaf springs for vibration dampers

APPLICATION

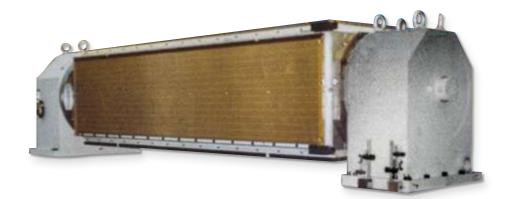
Milling of the leaf profile in unmanned 3-shift operation

DESCRIPTION

- 4 magnets on cube pallet
- Low, concentrated magnetic field for thin parts
- Magnetically active stops for workpiece alignment

ELECTRO PERMANENT MAGNETIC BRIDGE

SIZE 3000 x 900 mm

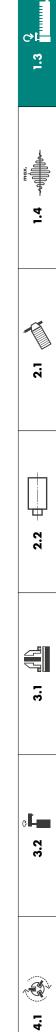

WORKPIECE Machine part

APPLICATION Milling grooves

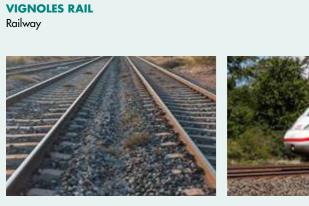
DESCRIPTION

 Swivel bridge with 4 electro permanent magnets

 As amplified system with longitudinal pole pitch



<u></u>



1.3.4 SPECIAL SOLUTIONS FOR MILLING RAILWAY POINTS

RAIL PROFILES

CRANE PROFILE

KSA all types, CR, PRI85R

5

GROOVED RAIL • RiPh37A, VICRI60, 75C1

REGULAR PROFILE

NP46; S49; UIC54; S54;

UIC60 and other types

2

SPECIAL PROFILES Crane track

BLOCK POINT Railway

BLOCK POINTS

Customer-specific

SAV DEVELOPMENT PROCESS

THE KEY TO JOINT SUCCESS: **RESEARCH AND DEVELOPMENT/CUSTOMER AND WORKPIECE** ORIENTATION

 $S^{(n)}$

New markets, fast innovation cycles, competitiveness and the pressure to deliver unique selling points make it necessary to develop customised solutions.

1. INQUIRY, TECHNICAL CLARIFICATION AND EVALUATION

- Machining operations
- Specification of the performance parameters
- Definition of the quality criteria
- Verification of the chucking points and areas
- Table adaptation and energy supply

2. FEASIBILITY STUDY/LAYOUT/QUOTATION

- Evaluation of different function principles
- Magnetic hydraulic mechanical vacuum or combinations

3. ENSURING FEASIBILITY, FUNCTION AND CALCULATION

- Tool and protrusion contour examinations
- FEM calculations, mechanical, magnetic, thermal, static and dynamic

4. MODELLING AND DESIGN ENGINEERING

- Design engineering on 25 networked CAD workstations, primarily in 3D
- Executed in Solid Works, Auto-CAD, Mechanical-Desktop and Euklid

5. DESIGN APPROVAL AND DETAILING

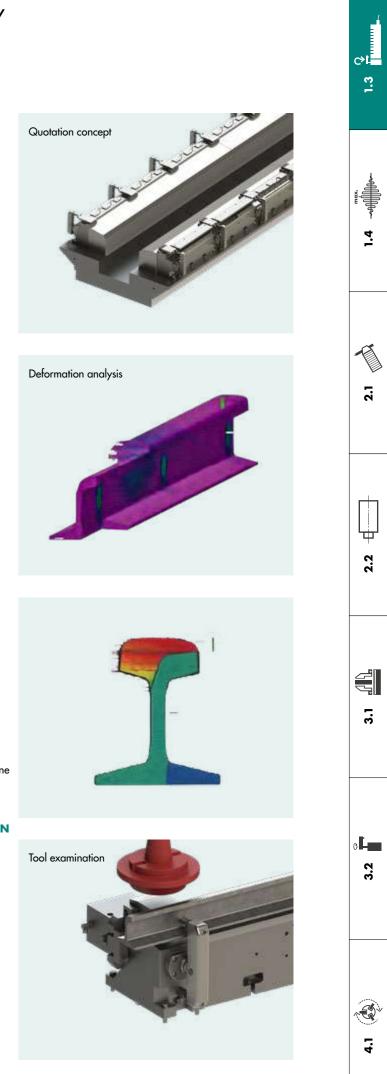
- Manufacturing approval after presentation to the customer
- Information exchange using IGES, DXF, DWG, STEP, VDA, PARASOLID, UNIGRAPHIC, VRML, STL

6. PRODUCTION

- Production and quality control exclusively at German sites
- Manufacturing linked with CAD/CAM workstations

7. TESTS, OPTIMISATION AND ACCEPTANCE

 Validated and optimised product quality before delivery for minimum machine downtime during commissioning and best production results


8. DELIVERY, INSTALLATION, COMMISSIONING AND INDUCTION

Responsibility for function and precision until the first sample

9. AFTER SALES SERVICE

Preventive maintenance, repair and spare parts service, minimum machine downtime during commissioning and best production results

238

ELECTRO PERMANENT MAGNETIC SYSTEM

For manufacturing railway points, web chucking/mono line

SIZE

System length 6 m

WORKPIECE Rails for manufacturing points

APPLICATION

Milling of running faces and feet

DESCRIPTION

- Amplified high-energy system
- Magnetically active alignment with 120 mm transverse pole pitch on the side of the web for extreme machining
- Basic chucking with longitudinal pole pitch

\bigcirc

 $\textcircled{\bigcirc}$

ELECTRO PERMANENT MAGNETIC SYSTEM For manufacturing railway points, web chucking/twin line

SIZE System length 4 m

WORKPIECE Rails for manufacturing points

APPLICATION Milling of running faces and feet

DESCRIPTION 2-row version

ELECTRO PERMANENT MAGNETIC SYSTEM

For manufacturing railway points, foot chucking/twin line

SIZE

10 m x 340 mm

WORKPIECE Railway rails

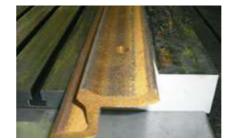
APPLICATION Heavy milling

DESCRIPTION

- High-energy system
- Active side stop on the foot to 2 sides
- 2-rows basic chucking

ELECTRO PERMANENT MAGNETIC SYSTEM For manufacturing tram profiles

SIZE Length 18 m

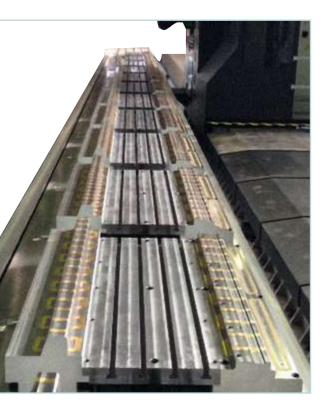

WORKPIECE Rails for manufacturing points

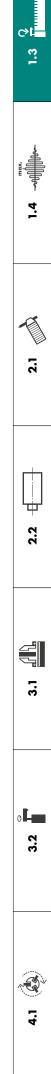
APPLICATION Heavy milling of running faces and feet on rail profile and Z-profiles

DESCRIPTION


Magnetic chucking on the foot

- Magnetic chucking alternatively on the web and on the side of the foot
- One row for regular and tongue profiles, second row for Z-profiles
- T-slot field for mechanical chucking





1.3.5 SPECIAL SOLUTIONS FOR PRECISION MILLING

ELECTRO MAGNETIC BAR

For alloys which are difficult to chuck

SIZE 450 x 70 mm

WORKPIECE Prisms

APPLICATION Grinding

DESCRIPTION Amplified electro magnet system for workpieces which are difficult to magnetise

ELECTRO PERMANENT MAGNETIC GRINDING FIXTURE For precise grinding of cubes on both sides

SIZE 630 x 220 mm

WORKPIECE Small cubes

APPLICATION Grinding on 4 sides on both sides

DESCRIPTION

- Loading on 2 sides
- Magnetically active stops, height-adjustable

SIZE 800 x 550 mm

WORKPIECE Gearbox parts

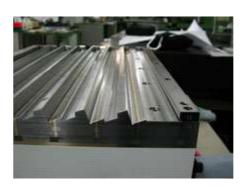
APPLICATION

Precision groove grinding

DESCRIPTION

- Amplified magnet system with demagnetising
- Hard inserts for mechanical wedge positioning system

ELECTRO PERMANENT MAGNETIC CHUCK With exchangeable pole plate


SIZE 600 x 400 mm

WORKPIECE Guide carriages

APPLICATION Grinding of faces and sides

DESCRIPTION

- Accommodation in the prism
- With stops and magnetically active alignment
- Exchangeable pole plate

ELECTRO PERMANENT MAGNETIC SYSTEM As large pallet

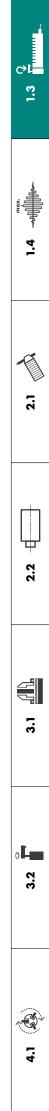
SIZE 3300 x 415 mm

WORKPIECE Bars

APPLICATION Milling chamfers

DESCRIPTION

- Precision magnet system with 18 mm transverse pole pitch
- Made from one piece for flexible use
- With prisms for workpiece holding



┫

SPECIAL SOLUTIONS FOR LINEAR GUIDEWAYS 1.3.6

For guide rails

SIZE 4000 x 150 mm

WORKPIECE Linear guideways

APPLICATION

Grinding of the guide tracks

DESCRIPTION

• 85 mm transverse pole pitch

Made from one piece

ELECTRO PERMANENT MAGNETIC PALLET

As pallet for linear guideways

SIZE 2310 x 260 mm

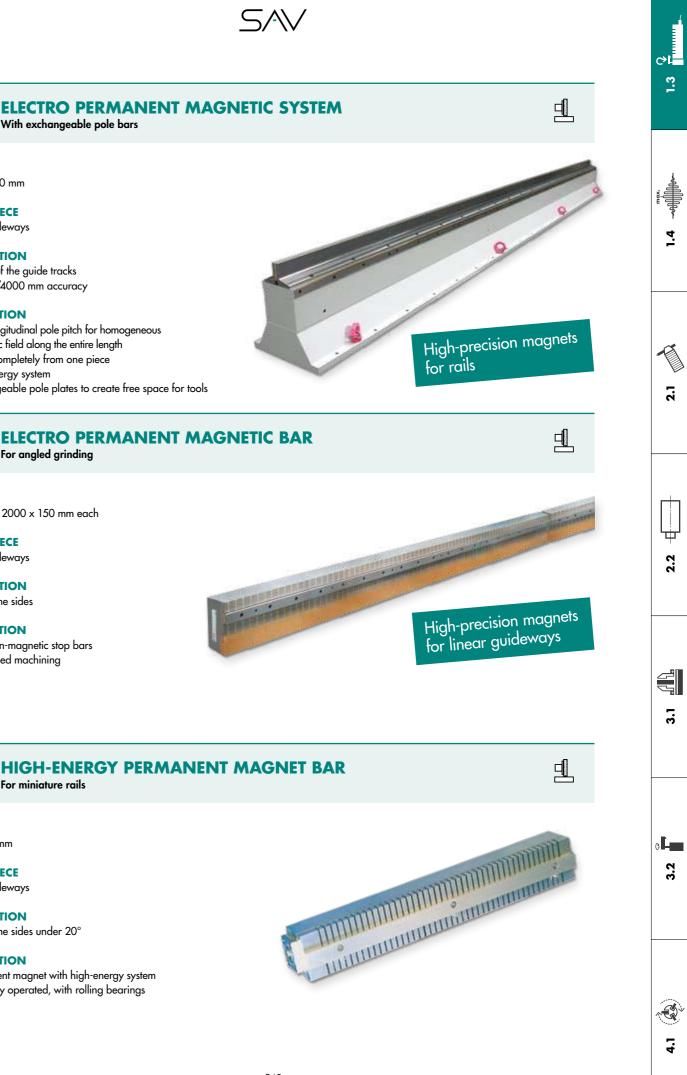
WORKPIECE Linear guideways

APPLICATION Grinding of the guide tracks

DESCRIPTION Electrical connection automatically docked

SIZE

4000 x 180 mm

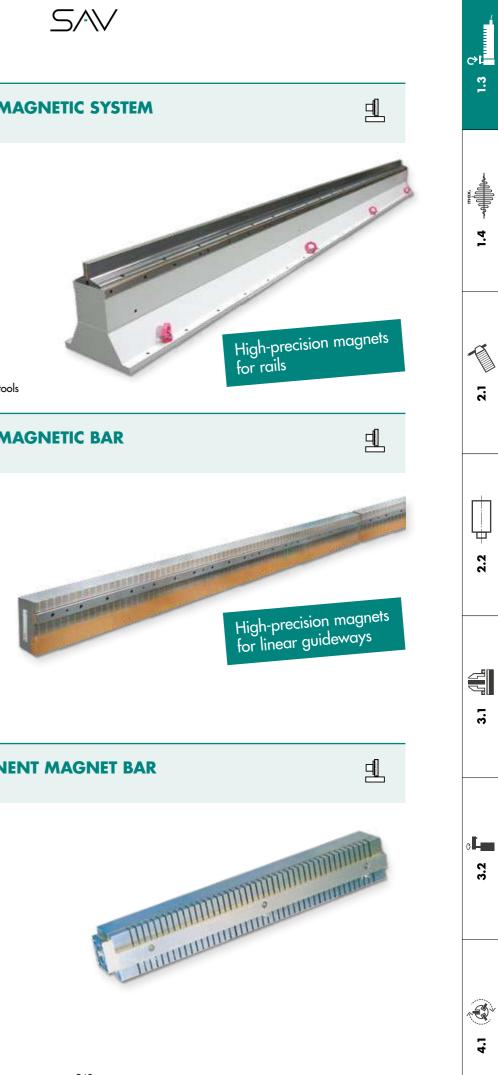

WORKPIECE Linear guideways

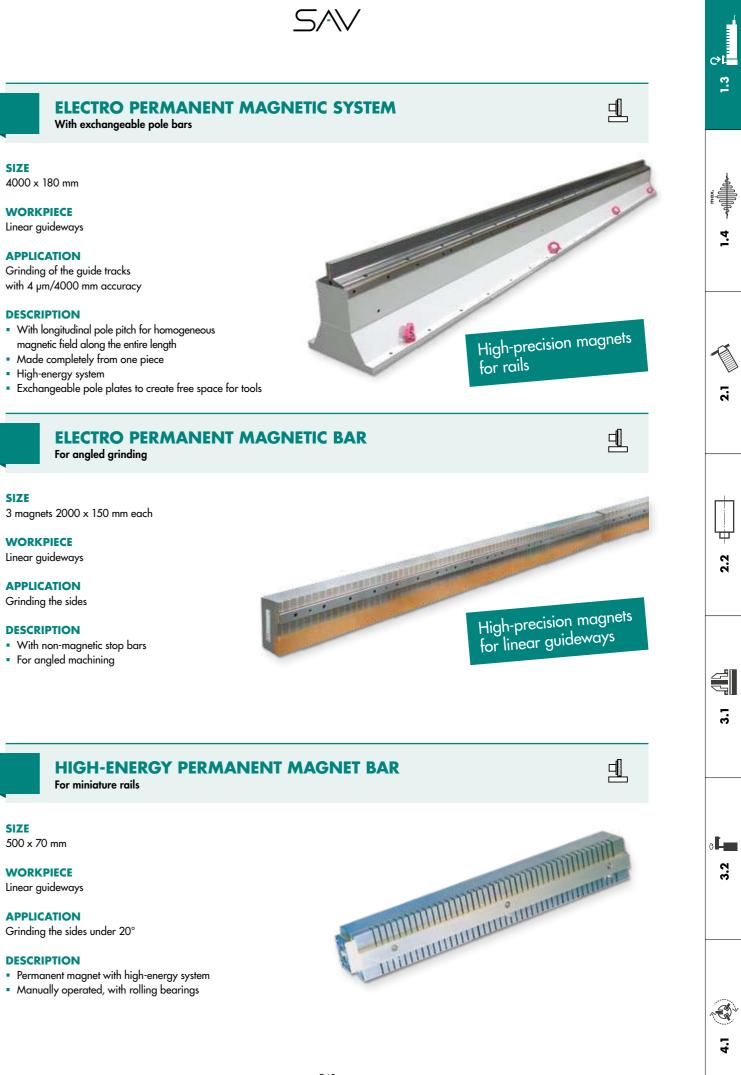
APPLICATION

with 4 µm/4000 mm accuracy

DESCRIPTION

- With longitudinal pole pitch for homogeneous magnetic field along the entire length
- Made completely from one piece
- High-energy system
- Exchangeable pole plates to create free space for tools




SIZE

WORKPIECE

APPLICATION Grinding the sides

DESCRIPTION

SIZE 500 x 70 mm

WORKPIECE Linear guideways

APPLICATION

DESCRIPTION

- Manually operated, with rolling bearings

ELECTRO PERMANENT MAGNETIC PALLET

With exchangeable pole plates

SIZE 1200 x 320 mm

WORKPIECE Mini rails

APPLICATION

Precision grinding

DESCRIPTION

- Longitudinal pole pitch for maximum precision
- With exchangeable pole plates
- Version on zero-point workholding system

SIZE

1300 x 260 mm

WORKPIECE Guide carriages

APPLICATION

Grinding

- DESCRIPTION
- Longitudinal pole pitch with amplified magnet system
- Magnetically active stops, movable

HIGH-ENERGY ELECTRO PERMANENT MAGNETIC CHUCK For high holding force on difficult workpieces

SIZE 500 x 175 mm

WORKPIECE Guide carriages

APPLICATION Grinding the bolt-on surface

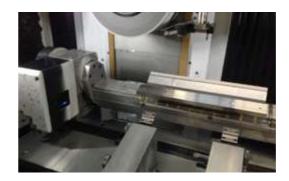
DESCRIPTION

- Force-optimised system
- Magnetically active stop bar
- For small workpiece contact surfaces
- Exchangeable precision stop

1.3.7

ELECTRO PERMANENT MAGNETIC INDEX TABLE For grinding with large workpiece projection

SIZE


1730 x 230 mm

WORKPIECE Bottom bending tools

APPLICATION Grinding

DESCRIPTION

Reinforced magnet system for on-the-fly grinding of bottom bending tools

ELECTRO PERMANENT MAGNETIC BI
With index table

SIZE 1100 x 200 mm


WORKPIECE Broaching tools

APPLICATION Grinding

- 4 workpieces on swivel bridge
- With magnetically active stops
- With precision index table

Precision – individually

248

manufactured

SPECIAL SOLUTIONS FOR PRECISION SINE TABLES 1.3.8

PRECISION MEASURING TABLE

For angle adjustment in 3 axes

SIZE 600 x 150 mm

WORKPIECE Turbine blades

APPLICATION

Measuring

DESCRIPTION

- 3 swivel axes with adjustment gear
- High axis with degree scale and vernier
- Transverse axis using the sinusoidal principle

PRECISION SINE TABLE With solid hydraulic attachment and clamping

SIZE 1000 x 500 mm

WORKPIECE Forming

APPLICATION

Roughing on segment grinding machine

DESCRIPTION

- Sine table with electro permanent magnetic chuck
- With hydraulic swivel drive
- With rotary encoder and display unit
- All axes can be hydraulically clamped

PRECISION SINE TABLE With special sealing

SIZE 1200 x 200 mm

WORKPIECE Plates

APPLICATION Grinding

DESCRIPTION

- Swivelling around the short axis up to 15°
- Adjustment mechanism and bearing sealed
- With solid clamping
- Inherently rigid design, bending-optimised
- All axes can be hydraulically clamped

HIGH-PRECISION SINE TABLE

Hydraulic clamping

SIZE 1000 x 600 mm

WORKPIECE Thin plates

APPLICATION Grinding

DESCRIPTION

- Swivelling around the short axis
- With mechanical adjustment gear
- Distortion-free hydraulic clamping
- Flatness and parallelism 0.01 mm
- Integrated length measurement system with 1 µm resolution

SIZE 655 x 150 mm

WORKPIECE Turbine blades

APPLICATION

Grinding

DESCRIPTION

- Swivelling around the central axis to both sides
- Adjustment with worm gear
- Angle set with degree scale and vernier or alternatively using the sinusoidal principle

PRECISION VACUUM SINE TABLE For chucking glass

SIZE 800 mm diameter

WORKPIECE

Glass prisms for military applications

APPLICATION Grinding

DESCRIPTION

- Adjustment on both sides ±20°
- Suction plate made of Ferrozell
- Reinforced with support elements

PRECISION SINE TABLE

With milling magnet

SIZE 300 x 150 mm

WORKPIECE Hard boards

APPLICATION Precision grinding

DESCRIPTION

- Swivelling around the central axis to both sides
- Angle adjustment using gauge blocks
- Clamping with threaded rods

PRECISION SINE TABLE

Swivelling to both sides

SIZE

1000 x 150 mm

WORKPIECE Blades

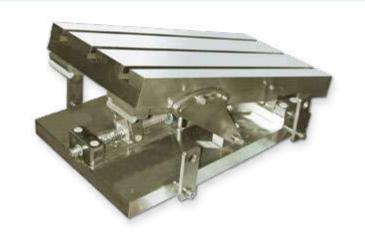
APPLICATION Grinding

DESCRIPTION

- Swivelling around the central axis ± 20°
- Distortion-free clamping using Spieth sleeves on both sides

PRECISION SINE MEASURING TABLE

Stainless version

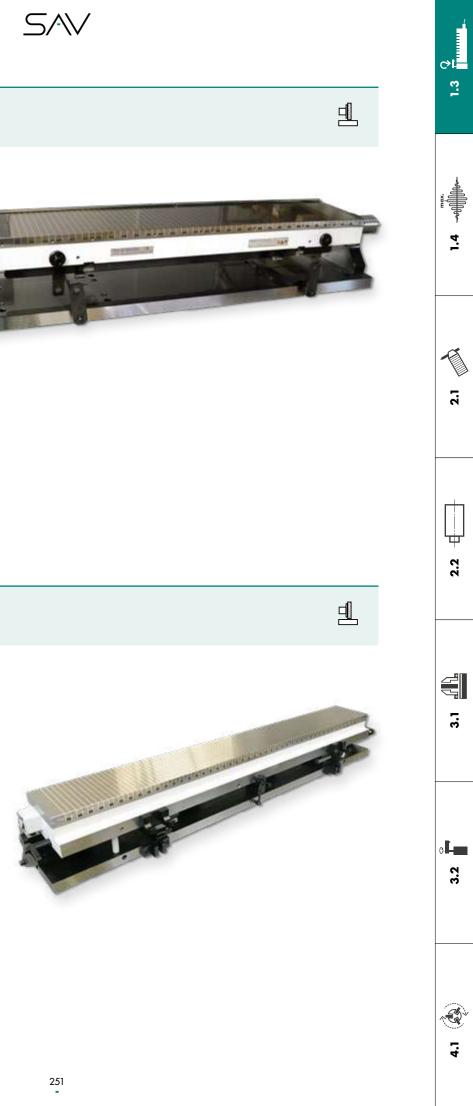

SIZE 650 x 300 mm

APPLICATION

For measuring tasks

DESCRIPTION

- Solid design, precision-optimised
- With adjustment gear
- Flatness and parallelism 3 µm/100 mm


PRECISION SINE TABLE Special version

SIZE Length 1200 mm

WORKPIECE Blades

APPLICATION Grinding

- Adjustment gear can be latched at the front
- Precision version with 4-fold support
- and 2 gauge block supports

PRECISION SWIVEL DEVICE

High accuracy for extremely long parts

SIZE Length 12 m

WORKPIECE Swap body trailers

APPLICATION Milling and grinding on combined machine

DESCRIPTION

- Swivel device with electro permanent magnet and pole blocks, motor driven, with rotary encoder
- Direct measuring system
- Axes with hydrostatic bearing
- With hydraulic clamping

ELECTRO PERMANENT MAGNETIC INDEXING TABLE

For milling small parts

SIZE 500 x 220 mm

WORKPIECE

Notched impact samples

APPLICATION Milling the notches and side faces

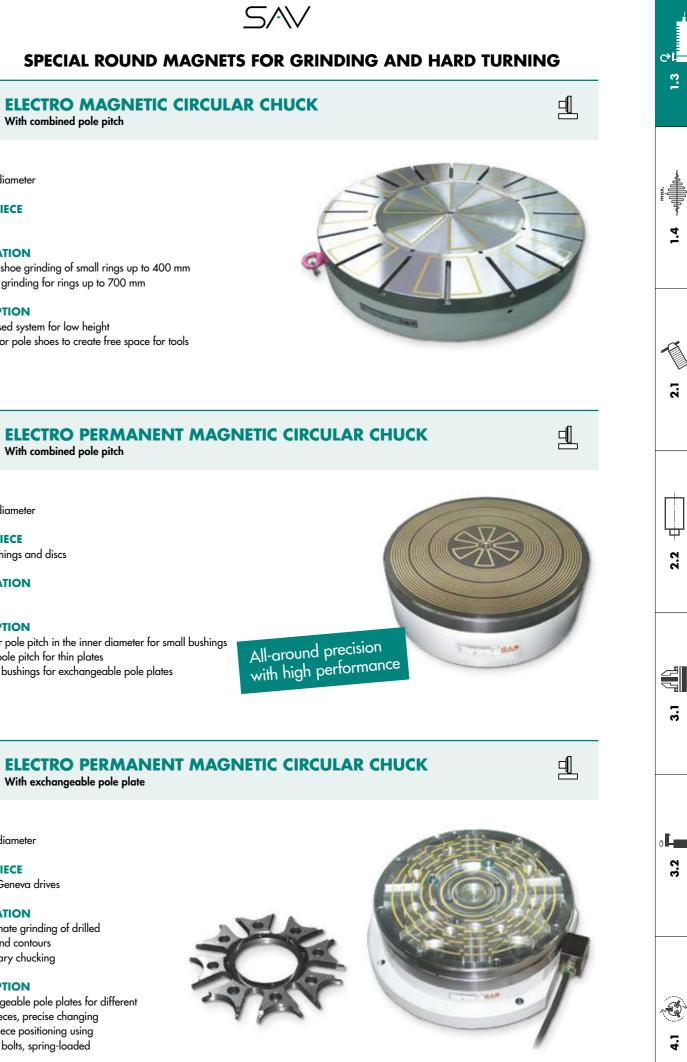
DESCRIPTION

- Amplified electro permanent magnetic system
- Creating free space for tools for manufacturing 3 workpiece rows from one plate
- Swivelling and indexing -90°/0°/+90°

1.3.9

SIZE

 \bigcirc


700 mm diameter

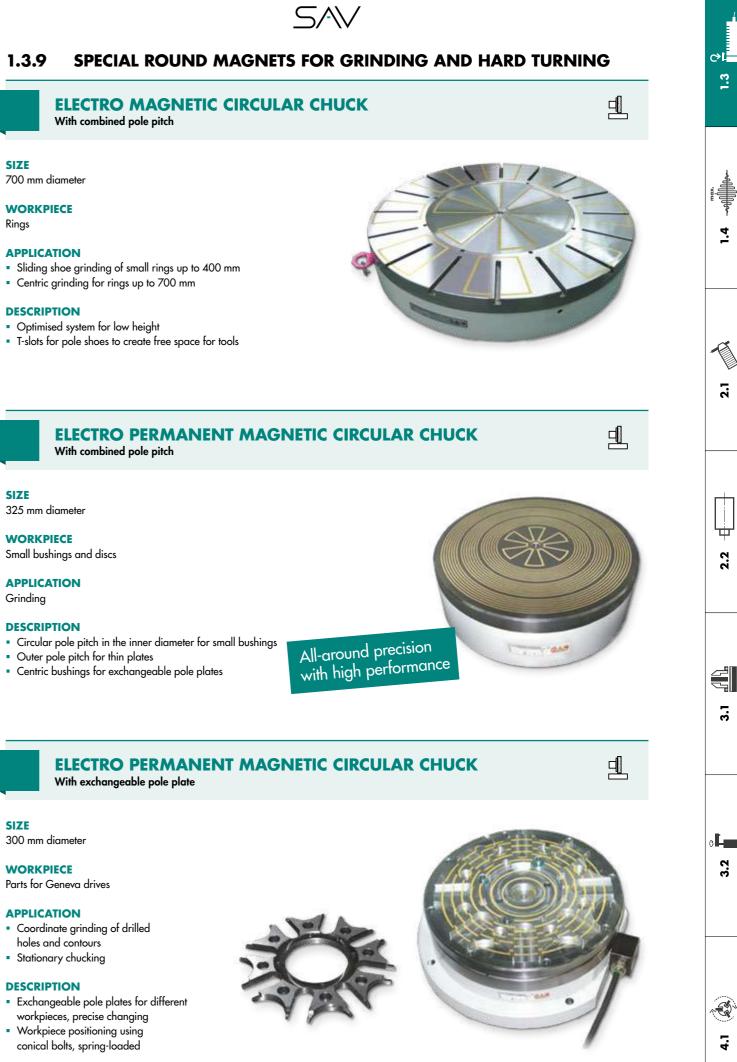
WORKPIECE Rings

APPLICATION

DESCRIPTION

- T-slots for pole shoes to create free space for tools

SIZE


325 mm diameter

WORKPIECE

APPLICATION

Grinding

DESCRIPTION

SIZE 300 mm diameter

WORKPIECE Parts for Geneva drives

APPLICATION

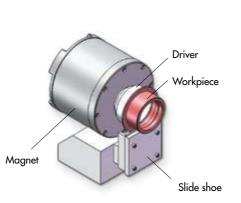
- Coordinate grinding of drilled
- holes and contours
- Stationary chucking

- workpieces, precise changing

For centreless shoe grinding

SIZE

Diameter 180 to 500 mm


WORKPIECE Rolling bearings with small contact surfaces

APPLICATION

For high-precision sliding shoe grinding

DESCRIPTION

- Workpieces held axially using drivers for initiating the rotating motion
- High-precision workpiece positioning eccentric using stationary sliding shoes

ELECTRO PERMANENT MAGNETIC CIRCULAR CHUCK

For manufacturing large bearings

SIZE

3100 mm diameter

WORKPIECE Rings

APPLICATION Grinding

DESCRIPTION

- Amplified magnet system with demagnetising cycle for low residual remanence
- Pole raisers to create free space for tools

ELECTRO MAGNETIC CIRCULAR CHUCK

For sliding shoe grinding of large rings

SIZE 650 mm diameter

WORKPIECE Bearing rings

APPLICATION Sliding shoe grinding

DESCRIPTION

- Electric magnet with radial pole pitch
- T-slots for pole raisers to create free space for tools

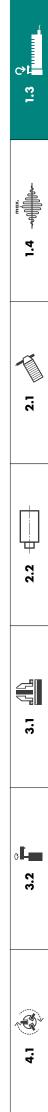
ELECTRO PERMANENT MAGNETIC CIRCULAR CHUCK With narrow, direct pole pitch

SIZE 1200 mm diameter

WORKPIECE Wide rings and discs

APPLICATION Grinding on rotary table machines

- Amplified magnet system
- 28 mm parallel pole pitch
- Housing annealed without stress



ELECTRO MAGNETIC CIRCULAR CHUCK WITH SEGMENT SWITCHING

For automatic grinding of very small parts

SIZE

740 mm diameter

WORKPIECE Ferrite cores

APPLICATION

Automated parallel grinding

DESCRIPTION

- Magnet with homogeneous field for small workpieces
- Rotating magnet, 16 upright magnet segments for automated loading and unloading as well as processing on segment grinding machines
- Cooling water draining at the centre

ELECTRO PERMANENT MAGNETIC CIRCULAR CHUCK

For planetary gears

SIZE

1600 mm diameter


WORKPIECE Gearwheels

APPLICATION

Cylindrical grinding

DESIGN

- Amplified system with demagnetising
- T-slots for optional pole shoes

DRIVEN LAMINATED TOP PLATE - SPECIAL EXECUTION

For automatic segment switching

SIZE 830 mm diameter

WORKPIECE

Rolling bearing

APPLICATION

Parallel grinding on segment grinding machine

DESCRIPTION

- Pole plate driven through ring gear
- Upright magnet system for automatic grinding
- 24 individually activated segments

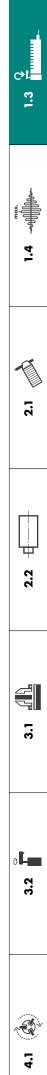
All-around precision with high performance

ELECTRO PERMANENT MAGNETIC CIRCULAR CHUCK

Magnets for machining large parts

SIZE 4300 mm diameter

WORKPIECE Bearing rings


APPLICATION Machining from 3 sides

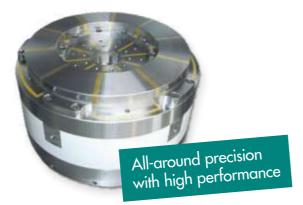
DESCRIPTION

- Minimal chucking and set-up times
- Extreme forces also for heavy machining
- Complete table surface usable
- High accuracy and damping from two-dimensional force transmission
- Large magnetically active areas in circumference direction
- Very small non-magnetic zones at the centre
- Individual spindle adaptation
- High circumferential speeds
- Extremely large diameters, e.g. 12 m in segment version

┫

ELECTRO PERMANENT MAGNETIC CIRCULAR CHUCK

For precision turning


SIZE 400 mm diameter

WORKPIECE Grinding wheel blanks

APPLICATION Turning finishing

DESCRIPTION

- Exchangeable pole rings to create free space for tools
- Precision version for manufacturing in the range of a few µm
- Exchangeable precision centring pin at the centre

ELECTRO PERMANENT CIRCULAR MAGNET

With zero point system

SIZE 500 mm diameter

WORKPIECE Bearing rings

APPLICATION Hard turning

DESCRIPTION

- Amplified system with demagnetising
- Centric zero point system
- For centring templates for workpiece alignment

ELECTRO PERMANENT MAGNETIC CIRCULAR CHUCKS For automatic pallet changes

 \bigtriangleup

 $\widehat{}$

SIZE

Diameter 800 and 900 mm

WORKPIECE

Ring gears

APPLICATION Hard turning

DESCRIPTION

- Electro permanent magnetic pallets
- With heavy-duty power connector on the circumference

ELECTRO PERMANENT MAGNETIC CIRCULAR CHUCK

With special spindle integration

SIZE

200 mm diameter

WORKPIECE Rings

APPLICATION

 Hard turning on magnet Turning on jaw chuck

DESCRIPTION

- Magnet using spring-loaded contact pieces, exchangeable
- Spindle integration in the draw tube with hollow
- clamping cylinder for optional jaw chuckElectrical supply, hydraulics and internal cooling water supply for alternating use

¢I 1.3

Ч. 4

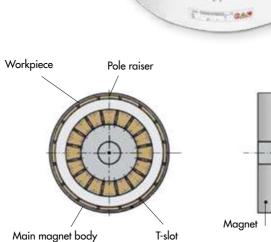
Spring-loaded contact pieces with cooling water supply

Contact flange

Electro permanent circular magnet with radial pole pitch, exchangeable

POLE RAISERS AND POLE BEAMS

To create free space for tools


POLE RAISERS

- To create free space for tools for machining from 3 sides
- Rigid version or spring-loaded live version
- Radially adjustable using T-slots
- Workpiece-specific design

POLE BARS

- As wear protection
- With and without T-slots
- Easy to clean

LAMINATED TOP PLATES AND RINGS

For adapting to your workpiece

ADD-ON POLE PLATES

- No loss of workpiece contact surface
- Easy to exchange
- Good swarf discharge and cleaning

ADD-ON POLE RINGS

- Up to 650 mm diameter
- Easy to exchange
- Cost-efficient

ADD-ON POLE PLATES

- For creating free space for tools
- For machining from 3 sides

HIGH-PERFO	ORMANCE EP MAGNET	EP RING MAGNET		
SIZE ø 230 mm	DESCRIPTION3000 rpm	SIZE ø 1000 mm	APPI Hard	

For extreme rotational speeds

ELECTRO PERMANENT MAGNETIC CIRCULAR CHUCK Large magnets

SIZE 3600 mm diameter

WORKPIECE Bearing rings

APPLICATION

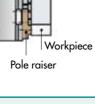
Hard turning of rolling bearing rings

DESCRIPTION

- Solid monoblock design
- Wear-free solid-state design
- Machining from solid material
- High magnetic fill level and efficiency
- Long-term stability thanks to stress-free annealed housing

SIZE 3500 mm diameter

WORKPIECE Bearing rings


APPLICATION For soft turning with high level of material removal

DESCRIPTION

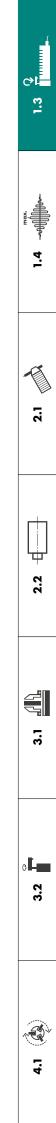
Extremely low height, with pole bars and rigid pole shoes

Tools

 \bigtriangleup

ELECTRO PERMANENT MAGNETIC CIRCULAR CHUCK

 $\hat{\Box}$



EP CIRCULAR MAGNET SIZE ø 200 mm

 Accuracy and stiffness from pole plate • High quality on parallelism and flatness upon agreement

ELECTRO PERMANENT MAGNETIC CIRCULAR CHUCK

For heavy turning

SIZE 3600 mm diameter

Hollow wheels for wind turbine gears

APPLICATION

WORKPIECE

Turning and drilling

DESCRIPTION

- First and second chucking with rigid and movable pole raisers
- Design for heavy machining and extreme speeds
- Workpiece positioning with centring crossbeam

ELECTRO PERMANENT MAGNETIC CIRCULAR CHUCK

Magnets for wind turbine bearings

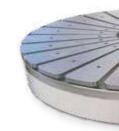
SIZE 2800 m diameter

WORKPIECE Bearing rings

APPLICATION Machining from 3 sides

DESCRIPTION

- Made from one piece
- Minimal chucking and set-up times
- Extreme forces also for heavy machining
- Complete table surface usable
- High accuracy and damping from two-dimensional force transmission
- Large magnetically active areas in circumference direction
- Very small non-magnetic zones at the centre
- Individual spindle adaptation
- High circumferential speeds
- Extremely large diameters, e.g. 12 m in segment version



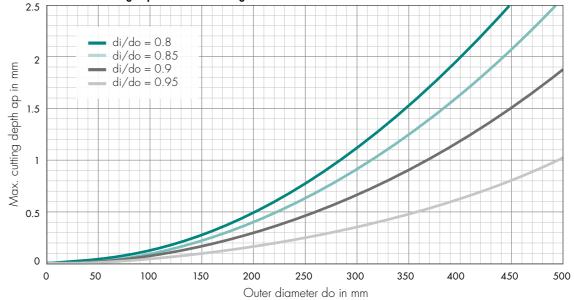
 \triangle

 \triangle

WORKPIECE Bearing rings

APPLICATION For hard turning

MANUFACTURING BENEFITS OF MAGNETIC CHUCKING


- Precision machining from 3 sides in one chucking process
- Levelling of the reference surface
- Two-dimensional holding force with high
- damping for excellent surface qualities Cost-efficient workholding fixture with low effort for machine integration
- Flexibility thanks to large workpiece holding area
- Releasing of internal workpiece holding during production

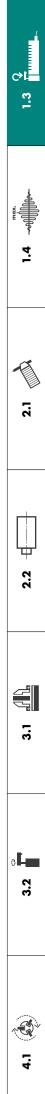
TEST RESULTS FOR HARD TURNING RING Ø 600 MM

Shape or surface quality	Reproduced quality of magnetic chuck	Improvement potential*
Arithmet. average roughness	0.3 µm	0 % to 25 %
Circle format deviation	0.5 µm	75 % to 90 %
Cylinder irregularity	10 µm	80 % to 85 %
Wall thickness fluctuation	25 µm	60 % to 80 %

* Improvement potential compared to conventional methods

Calc. max. cutting depths for hard turning on SAV 244.71

Ring width = 3 x wall thickness Feed 0.15 mm di/do = diameter ratio



Material: 100 Cr6

ELECTRO PERMANENT MAGNETIC CIRCULAR CHUCK

For wind turbine bearings

SIZE 3000 mm diameter

WORKPIECE

Bearing rings

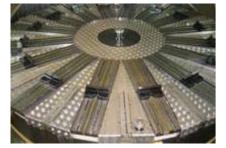
APPLICATION High-precision hard turning

DESCRIPTION

- Made from one piece
- Model year 1993: Development of the first hard turning magnet in the market

Manufacturing benefits – implemented consistently! SAV – pioneer for innovative technologies.

ELECTRO PERMANENT MAGNETIC CIRCULAR CHUCK Modular for large rings


SIZE 3600 mm diameter

WORKPIECE Large bearings

APPLICATION Turning and drilling

DESCRIPTION

- Amplified magnet system
- Bar structure design
- Workpiece holding on rigid pole shoes

ELECTRO PERMANENT MEASURING DEVICE Customer-specific

SIZE

 \triangle

 $\hat{\Box}$

642 x 642 mm

APPLICATION Precision measuring

DESCRIPTION

Module magnet for integration in granite plate. Integrated features for creating free space for tools, positioning and referencing.

PERMANENT MAGNETIC WORKPIECE CARRIER For easy operation

SIZE 300 x 60 mm

WORKPIECE Cutting inserts

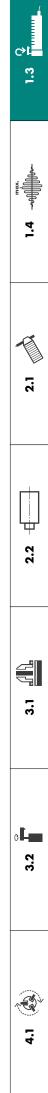
DESCRIPTION Magnetically optimised system for high-temperature application

SIZE 2000 x 140 mm

WORKPIECE Bottom bending tools

APPLICATION Workholding

- Amplified magnet system
- Optimum safety with electro permanent magnets
- Bipolar system with a longitudinal pole gap



1.3.11 DEMAGNETISERS – SPECIAL VERSIONS

DEMAGNETISING BELT FOR ROLLING BEARINGS

For wide rings

SIZE Belt width 800 mm

WORKPIECE Rolling bearing rings

APPLICATION

Demagnetising

DESCRIPTION

- Two table demagnetizers with opposite poles, stacked
- Upper device height-adjustable
- Belt drive with light barrier control
- Low-frequency generator for low residual remanence

ð

PLATE DEMAGNETISING BELT For small bulk parts

SIZE

Belt width 250 mm

WORKPIECE Automotive parts

APPLICATION Demagnetising

DESCRIPTION

- Table adjustable in angle and heightHigh power with low-frequency
- generator for low residual remanence

DEMAGNETISING TABLE For long shafts

SIZE Opening width 400 x 350 mm each

WORKPIECE

Cylinders

APPLICATION Demagnetising

DESCRIPTION

- Workpiece holding with prisms
- Tunnel demagnetiser, moving longitudinally

TUNNEL DEMAGNETISING TABLE For full automation

SIZE Belt width 500 mm

WORKPIECE Automotive parts

APPLICATION Demagnetising

- Large tunnel opening for large parts
- Horizontal and vertical demagnetising

CHAPTER **TECHNICAL INFORMATION ON**

MAGNET SYSTEMS AND LIFTING MAGNETS

Chapter 1.4 "Technical information on magnet systems and lifting magnets"

 $S \wedge V$

Request download by email here.

1.3 ⊅t⊖

1

2.1

2.2

3.1

3.2

S/V

Request download by email here.

Chapter 1.4 "Technical information on magnet systems and lifting magnets"

Request download by email here.

1.3

1.4

2.1

2.2

3.1

3.2

æ

S/V

Request download by email here.

Chapter 1.4 "Technical information on magnet systems and lifting magnets"

Request download by email here.

1.3

1.4

2.1

2.2

3.1

3.2

æ

S/V

Request download by email here.

Chapter 1.4 "Technical information on magnet systems and lifting magnets"

Request download by email here.

1.3

1.4

2.1

2.2

3.1

3.2

æ

S/V

Request download by email here.

Chapter 1.4 "Technical information on magnet systems and lifting magnets"

Request download by email here.

1.3

1.4

2.1

2.2

3.1

3.2

æ

S/V

Request download by email here.

Chapter 1.4 "Technical information on magnet systems and lifting magnets"

Request download by email here.

1.3

1.4

2.1

2.2

3.1

3.2

æ

S/V

Request download by email here.

Chapter 1.4 "Technical information on magnet systems and lifting magnets"

Request download by email here.

1.3

1.4

2.1

2.2

Ĩ

3.1

3.2

æ

S/V

Request download by email here.

Chapter 1.4 "Technical information on magnet systems and lifting magnets"

Request download by email here.

1.3

1.4

2.1

2.2

3.1

3.2

æ

S/V

Request download by email here.

Chapter 1.4 "Technical information on magnet systems and lifting magnets"

Request download by email here.

1.3

1.4

2.1

2.2

Ĩ

3.1

3.2

æ

S/V

Request download by email here.

Chapter 1.4 "Technical information on magnet systems and lifting magnets"

Request download by email here.

1.3

1.4

2.1

2.2

3.1

3.2

æ

S/V

Request download by email here.

Chapter 1.4 "Technical information on magnet systems and lifting magnets"

Request download by email here.

1.3

1.4

2.1

2.2

Ĩ

3.1

3.2

æ

S/V

Request download by email here.

Chapter 1.4 "Technical information on magnet systems and lifting magnets"

Request download by email here.

1.3

1.4

2.1

2.2

3.1

3.2

æ

S/V

Request download by email here.

Chapter 1.4 "Technical information on magnet systems and lifting magnets"

Request download by email here.

1.3

1.4

2.1

2.2

3.1

3.2

æ

S/V

Request download by email here.

Chapter 1.4 "Technical information on magnet systems and lifting magnets"

Request download by email here.

1.3

1.4

2.1

2.2

3.1

3.2

æ

S/V

Request download by email here.

Chapter 1.4 "Technical information on magnet systems and lifting magnets"

Request download by email here.

1.3

1.4

2.1

2.2

3.1

3.2

æ

S/V

Request download by email here.

Chapter 1.4 "Technical information on magnet systems and lifting magnets"

Request download by email here.

1.3

1.4

2.1

2.2

3.1

3.2

æ

S/V

Request download by email here.

Chapter 1.4 "Technical information on magnet systems and lifting magnets"

Request download by email here.

1.3

1.4

2.1

2.2

3.1

3.2

æ

S/V

Request download by email here.

Chapter 1.4 "Technical information on magnet systems and lifting magnets"

Request download by email here.

1.3

1.4

2.1

2.2

3.1

3.2

æ

S/V

Request download by email here.

Chapter 1.4 "Technical information on magnet systems and lifting magnets"

Request download by email here.

1.3

1.4

2.1

2.2

3.1

3.2

æ

S/V

Request download by email here.

Chapter 1.4 "Technical information on magnet systems and lifting magnets"

Request download by email here.

1.3

1.4

2.1

2.2

Ĩ

3.1

3.2

æ

S/V

Request download by email here.

Chapter 1.4 "Technical information on magnet systems and lifting magnets"

Request download by email here.

1.3

1.4

2.1

2.2

3.1

3.2

æ

S/V

Request download by email here.

Chapter 1.4 "Technical information on magnet systems and lifting magnets"

Request download by email here.

1.3

1.4

2.1

2.2

3.1

3.2

æ

CHAPTER 2

SYSTEMS

DRESSING AND

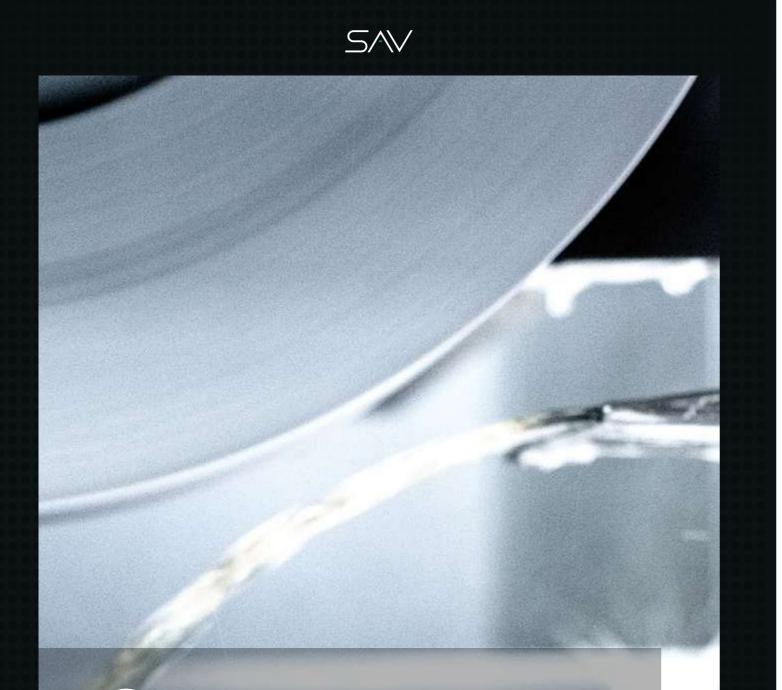
WORKHOLDING

FOR GRINDING

Are you looking for a tailor-made option for upgrading your surface grinding machine? With the SAV accessory units for dressing grinding wheels and cylindrical grinding, we offer a simple and reliable option for expanding functions. The supplementary SAV dressing and workholding systems are ideal, for example, if you only have to grind profiles,

angles or radii occasionally but still require high-precision results. Our range of add-on units with proven, reliable precision offers exactly the right performance. But our precision cylindrical grinding units are also the ideal functional modules for your application if you want to use your surface grinding machine as aprecision cylindrical grinding unit for specific projects. Even if maximum precision is required, e.g. when grinding tapers, you can make use of our dressing and workholding systems with sine adjustment. Please contact us with your requirements so we can provide you with more information.

GOUR DRESSING AND WORKHOLDING SYSTEMS HELP YOU TO CREATE EFFECTIVE **HIGH-PRECISION GRINDING RESULTS.**


TRUST IN THE EXPERTS WITH SAV!

DIETER LEIKAUF BUSINESS UNIT MANAGER MAGNET SYSTEMS

2. DRESSING AND WORKHOLDING SYSTEMS FOR GRINDING 2.1 **GRINDING WHEEL DRESSING UNITS**

	SAV ART. NO.	DESIGNATION	COMMENTS	PAGE
æ	434.01	Precision radius dresser	For profiling grinding wheels up to 400 mm diameter	316
•1- 1- P	434.02	Precision radius dresser	For profiling grinding wheels up to 200 mm diameter, universal	317
ß	434.05	Precision angle dresser	For angled dressing of grinding wheels using the sinusoidal principle	318
1	434.07	Precision punch grinder	For grinding dies and profiling grinding wheels	319
	401.01	Dressing diamonds	Accessories	320

CHAPTER

GRINDING WHEEL DRESSING UNITS

power. people. passion.

1.3

Ţ Ţ

3.1

3.2

SAV 434.01

PRECISION RADIUS DRESSER

For profiling grinding wheels

APPLICATION

The radius dressing unit can be used to profile dressing wheels up to 400 mm diameter with concave or convex radii.

DESIGN

The lapped, robust spindle runs in a honed hole and is sealed against dust. With degree scale. The radius movement is limited by adjustable stops. The arm with the dressing diamond is height-adjustable using threads. A fine-adjustment screw on the arm can be used to move the diamond into the correct position.

The precision radius dresser is delivered with 3 exchangeable dressing inserts and dressing arm 2 as a standard. 2 additional arms with a larger range for the dressing radius are available. Arm 3 with a 100 mm raising foot for dressing larger radii.

ACCESSORIES

Dressing diamond SAV 401.01 - K 10, type D Arm 1 - SAV 434.01 - 1 Arm 3 - SAV 434.01 - 3 - includes support block LxWxH 128x128x100 All subject to a surcharge.

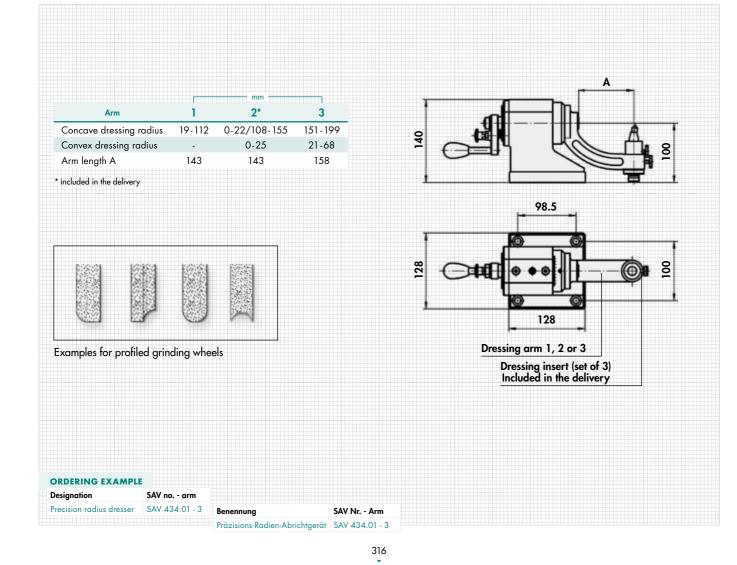
SAV 434.02

PRECISION RADIUS DRESSER

For profiling grinding wheels

APPLICATION

The radius dressing unit can be used to profile grinding wheels with concave and convex radii in combination with tangent bevels.

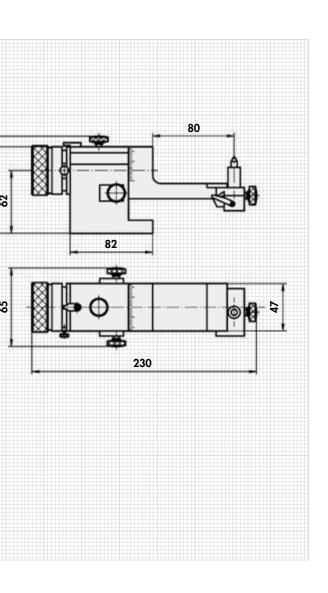

DESIGN

Finished on all sides, with limit stops and a magnifying sight glass in the spindle. The swivel arm features a scale. The radius movement is limited by adjustable stops. The slider with the dressing diamond is attached to the swivel arm with a dovetail structure. The dressing diamond is set with gauge blocks. A fine-adjustment screw on the diamond holder can be used to move the diamond into the correct position.

ACCESSORIES

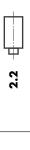
Dressing diamond SAV 401.01 - K 06 Available subject to a surcharge.

Max. grinding wheel ø in mm 200 Opening for diamond in mm 6 Adjustment path in mm ±15	Axis height Max. concave dressing radius	in mm	26	
Opening for diamond in mm 6 Adjustment path in mm ±15	Max. concave dressing radius	in mm	16	
Adjustment path in mm ±15	Max. grinding wheel ø	in mm	200	
	Opening for diamond	in mm	6	
Weight in kg 4.1	Adjustment path	in mm	±15	
	Weight	in kg	4.1	


Examples for profiled grinding wheels

ORDERING EXAMPLE

Designation SAV no. SAV 434.02 Precision radius dresser



언

1.3

c**L** 3.2

SAV 434.05

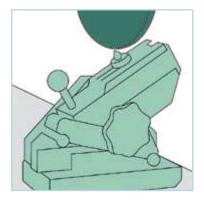
PRECISION ANGLE DRESSERS

For angled dressing of grinding wheels

APPLICATION

For precise grinding wheel dressing using the sinusoidal principle on surface grinding machines.

DESIGN

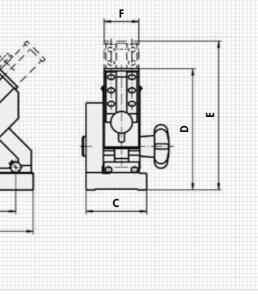

All parts hardened HRC 60 and precision-ground. The starting position of the dressing unit is at 45°. Angle accuracy: 5 arc sec

ACCESSORIES

Dressing diamonds for SAV 434.05 - 45: SAV 401.01 - K 10 Dressing diamond for SAV 434.05 - 100: SAV 401.01 - MK 1 Available subject to a surcharge.

APPLICATION

The desired angle is adjusted with gauge blocks as per a supplied table (sinusoidal principle).



Max. dressing travel A	in mm	45	100
Base area B x C	in mm	140 x 70	245 x 78
Height D – E	in mm	142 - 172	232 - 302
Slide width F	in mm	40	48
Home position	in °	45	45
Total adjustment range	in °	0 - 90	0 - 90
Axis distance G	in mm	100	200
ø for dressing diamond	in mm	6.2 / 1:10	MK 1
Weight	in kg	4.75	13.5

ORDERING EXAMPLE Designation SAV no. - max. dressing travel Precision angle dresser SAV 434.05 - 100

SAV 434.07

PRECISION PUNCH GRINDER

For grinding dies and profiling grinding wheels

APPLICATION

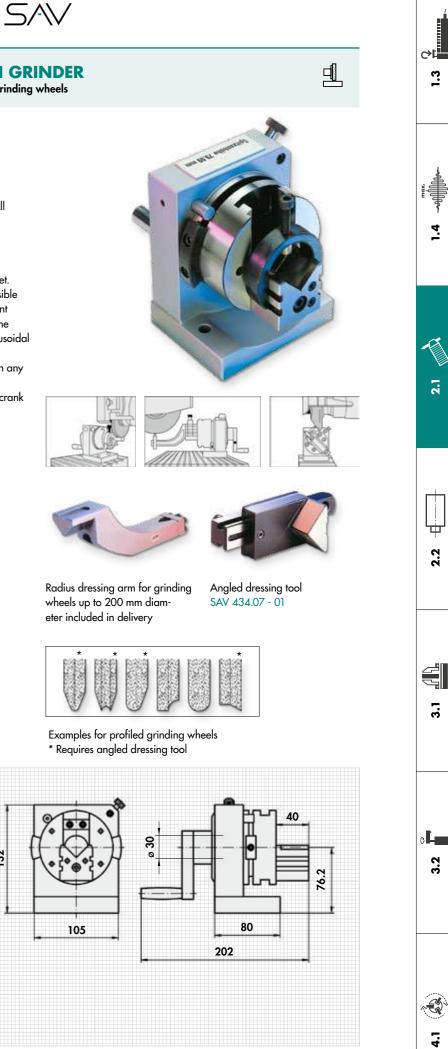
For grinding dies with maximum precision and for profiling grinding wheels.

DESIGN

Manufactured completely from steel with maximum precision. All parts hardened and polished. Radius dressing arm for grinding wheels up to 200 mm diameter is delivered as a standard.

HANDLING

Adjustable stops and a stop pin allow any desired angle to be set. The stops are clamped to a conical strip to achieve the best possible workholding force. Adjusting screw for uncomplicated adjustment of the prism support. Device for setting any desired angle with the adjustable stop, the stop pin and the gauge blocks using the sinusoidal principle. The prism support is guided in a T-slot in the middle of the indexing plate. A single screw clamps the prism support in any position without deviation. Indexing pin and index plate with 24 notches, 15° division and an accuracy of ±30 arc sec Hand crank for easy turning of the index plate. 30 mm through hole for long dies. The L-shaped design of the


base unit gives the device additional strength and rigidity.

ACCESSORIES

Angled dressing tool: SAV 434.07 - 01 Dressing diamond: SAV 401.01 - 10 - 92 Both subject to a surcharge.

Examples of manufactured dies

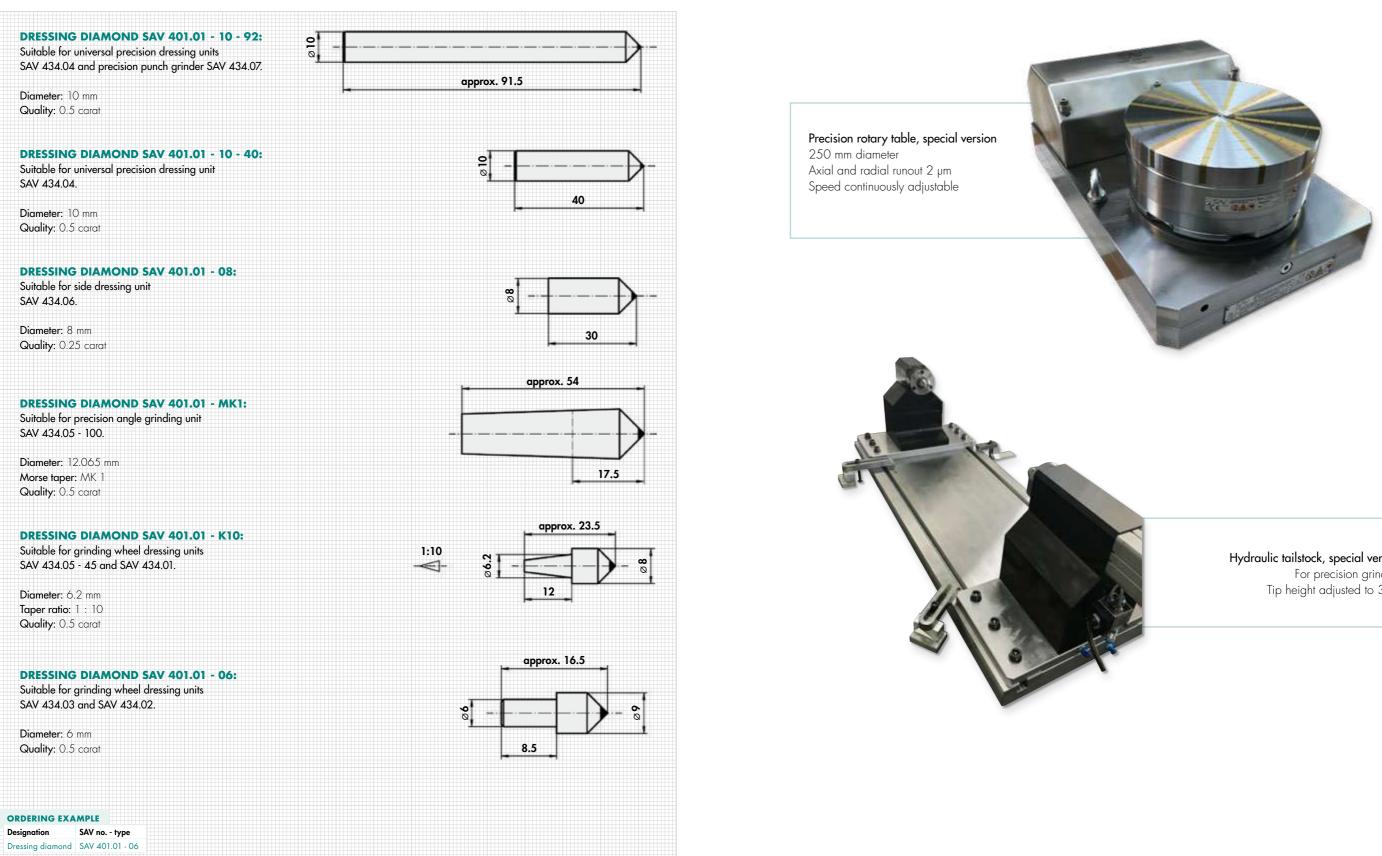
Width	in m	nm 105	
Total height	in m	nm 132	
Tip height	in m	nm 76.2	
Depth	in m	nm 202	
Length of the prism b	olock in m	nm 40	132
Chucking area prism	nø inm	nm 4 - 25	5
Max. concave dress radius	ing in m	im 100	
Max. concave dress radius	ing in m	im 50	
Max. dressing lengt	h in m	nm 10	
Taper for diamond	in m	nm 10	
Weight	in kį	g 5	
ORDERING EXAMPL	.Е		
Designation	SAV no.		
recision punch grinder	SAV 434.07		

G

В

318

319


DRESSING DIAMONDS

For dressing grinding wheels

SAV 401.01

APPLICATION

For use in dressing and die grinding units.

 S^{A}

APPLICATION

Hydraulic tailstock, special version For precision grinding

Tip height adjusted to 3 µm

언

1.3

1.4

1

2.1

2.2

ŢŊ

3.1

с**Ļ**

3.2

× C

2. DRESSING AND WORKHOLDING SYSTEMS FOR GRINDING **PRECISION CYLINDRICAL GRINDING UNITS** 2.2.2

	SAV ART. NO.	DESIGNATION	COMMENTS	PAGE
	GRINDING UNITS			
1	434.80	Precision cylindrical grinding unit	Complete with tailstock, adjustable using the sinusoidal principle	324
A	434.81	Precision cylindrical grinding unit	With sine adjustment	325
<u>کو</u>	434.83	Precision cylindrical grinding unit	With sine adjustment	326
de l'	434.85	Precision cylindrical grinding unit	With manual drive	327
	434.87	Precision cylindrical grinding unit	With side drive	328
S	439.62	Three-jaw chuck	Accessories for cylindrical grinding units and index tables	329
P	439.63	Four-jaw chuck	Accessories for cylindrical grinding units and index tables	329
-	439.66	Collet chuck Deckel no. 355 E	Accessories for cylindrical grinding units and index tables	329
0	439.68	Nut for collet chuck	Accessories for cylindrical grinding units and index tables	330
0	439.69	Lathe centre	Accessories for cylindrical grinding units and index table, rigid, tailstock side for cylindrical grinding units	330
5	439.70	Lathe centre	Accessories for cylindrical grinding units and index tables, spring-loaded, tailstock side for cylindrical grinding units	330
107	439.71	Lathe centre	60° acute angle, with catch, spindle side with flange	330
3	439.73	Three-jaw quick-release chuck	Accessories for cylindrical grinding units and index tables	330
ERO SETTER				
00	483.02	Zero setter – THE ORIGINAL	Vertical and horizontal	331

PRECISION CYLINDRICAL GRINDING UNITS

CHAPTER

7 8 9

4 5 6

123

0 . -

power. people. passion.

PAGES 324 - 331

1.3

3.2

Ċ

SAV 434.80

PRECISION CYLINDRICAL GRINDING UNIT

Complete with tailstock, adjustable using the sinusoidal principle

APPLICATION

The cylindrical grinding unit was developed specially for use in toolmaking, die making and mould making. Due to its convenient size, the device can be used any time without setup work.

Its universal suitability makes it possible to machine parts which cannot be manufactured on cylindrical grinding machines or only with great effort.

DESIGN

The base plate and all wear parts are hardened. Protection rating of bearing and motor: IP 54. With spindle versions:

- Schaublin 470 E (Sch): Feedthrough 23.5 mm
- SK 30 (SK 30)
- Deckel 355 E (D): Feedthrough 20.0 mm

Tailstock adjustable on base plate, with spring-loaded lathe centre. Control unit SAV 875.40 included in the delivery. 24 V electric motor, continuously adjustable from 0 - 333 rpm. Clockwise/anti-clockwise rotation.

With dividing unit 12 x 30° using indexing bolt, other divisions on request. Sine swivel range from $0 - 45^{\circ}$.

ACCESSORIES

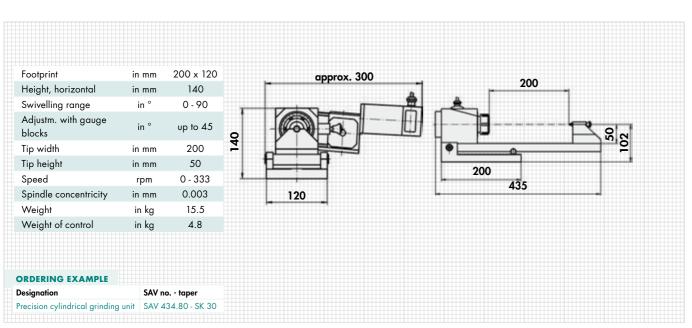

- Permanent magnetic circular chuck:
- D = 100 mm, with flange. SAV 244.03 100 taper Three-jaw chuck:
- D = 80 mm, with flange. SAV 439.62 80 taper Four-jaw chuck:
- D = 80 mm, with flange. SAV 439.63 80 taper Flat disc:
- D = 90 mm, with threads M8. SAV 439.64 90 taper
- Collet chuck Schaublin no. 470 E: D = 2.0 to 3.0 mm, 0.5 mm step D = 4.0 to 20.0 mm, 1.0 mm step or complete set from 3.0 to 18.0 mm (set) SAV 439.67 - 470 E - set
- Lathe centre:
- 60° point angle with catch, spindle side with flange SAV 439.71 taper Collet chuck Deckel no. 355 E:
- D = 0.5 18.0 mm or complete set from 3.0 18.0 mm (set) SAV 439.66 - 355 E - set

Image shows version with lathe centre

on spindle side (accessories)

Control unit SAV 875.40 $W \times H \times L = 170 \times 140 \times 230$

SAV 434.81

PRECISION CYLINDRICAL GRINDING UNIT With sine adjustment

SAV

APPLICATION

The cylindrical grinding unit was developed specially for use in toolmaking, die making and mould making. Due to its convenient size, the device can be used any time without setup work. Its universal suitability makes it possible to machine parts which cannot be manufactured on cylindrical grinding machines or only with great effort.

DESIGN

The base plate, the workholding bracket and all wear parts are hardened. Protection rating of bearing and motor: IP 54.

With spindle versions:

- Schaublin 470 E (Sch)
- SK 30 (SK 30)
- Deckel 355 E (D)

Control unit SAV 875.40 included in the delivery. 24 V electric motor, continuously adjustable from 0 - 333 rpm. Clockwise/anti-clockwise rotation.

With dividing unit 12 x 30° using indexing bolt, other divisions on request. Max. $24 \times 15^{\circ}$ possible. Sine swivel range from $0 - 35^{\circ}$.

ACCESSORIES

- Permanent magnetic circular chuck:
- D = 100 mm, with flange. SAV 244.03 100 taper
- Three-jaw chuck, adjustable:
- D = 80 mm, with flange. SAV 439.62 80 taper Four-jaw chuck:
- D = 80 mm, with flange. SAV 439.63 80 taper Flat disc:
- D = 90 mm, with threads M8. SAV 439.64 90 taper
- Collet chuck Schaublin no. 470 E: D = 2.0 to 3.0 mm, 0.5 mm step D = 4.0 to 20.0 mm, 1.0 mm step
- or complete set from 3.0 to 18.0 mm (set) SAV 439.67 - 470 E - set
- Collet chuck type ER: SAV 439.65 - ER 32 - SK 30
- Collet chuck Deckel 355 E: D = 0.5 to 18.0 mm or complete set from 3.0 to 18.0 mm (set) SAV 439.66 - 355 E - set

Weight of control	in kg	4.8	U	
Weight of cylindrical grinding unit	in kg	approx. 9.0	171	
Spindle concentricity	in mm	0.003		
Speed	rpm	0 - 333		Val
Spindle height	in mm	50		- ···
Total length	in mm	160	F	80
Height, horizontal	in mm	107		a

ORDERING EXAMPLE SAV no. - taper Designation Precision cylindrical grinding unit SAV 434.81 - SK 30

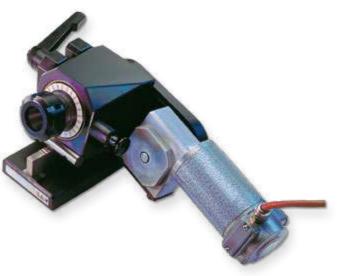
¢

1.3

4.1

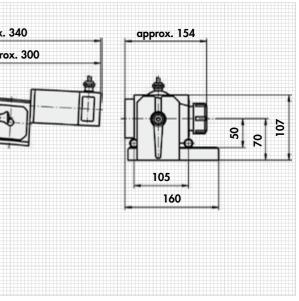
2.1

2.2


IJIJ.

3.1

°L


3.2

4.1

Control unit SAV 875.40 W x H x L = 170 x 140 x 230

PRECISION CYLINDRICAL GRINDING UNIT SAV 434.83 With sine adjustment

 $S \wedge V$

SAV 434.85

PRECISION CYLINDRICAL GRINDING UNIT

With manual drive

APPLICATION

Cylindrical grinding, profile grinding, dividing, concentricity testing.

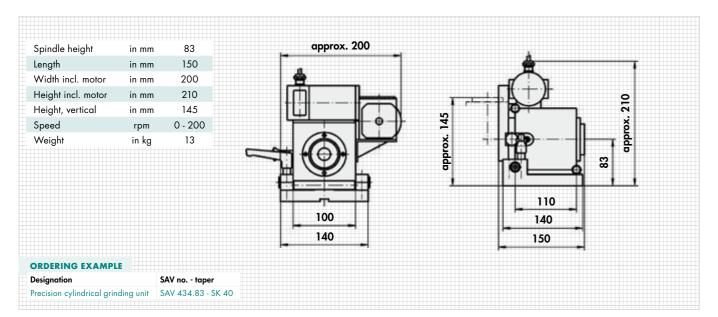
DESIGN

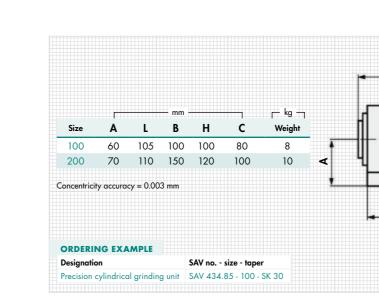
All wear parts are hardened. The bearing is protected against splash water. Compact, small space requirement, instantly ready for use. Modular system. Special versions on request.

Size 100 (with spindle versions):

- Schaublin 470 E (Sch)
- Steep taper 30 (SK 30)
- Deckel 355 E (D)

With dividing unit $12 \times 30^{\circ}$ using indexing bolt, other divisions on request.


Size 200 (with spindle tapers):


- Schaublin 470 E (Sch)
- Steep taper 40 (SK 40)

With grid holes 4 x 90°. With grid indexing for use as index table available on request (surcharge applies). With indexing holes on request, division as specified.

ACCESSORIES

- Three-jaw chuck:
- D = 80 mm, with flange. SAV 439.62 80 SK 40
- D = 100 mm, with flange. SAV 439.62 100 SK 40
- Four-jaw chuck:
- D = 80 mm, with flange. SAV 439.63 80 SK 40
- D = 100 mm, with flange. SAV 439.63 100 SK 40
- Permanent magnetic circular chuck:
- D = 100 mm, switchable, with flange, SAV 244.03 100 taper Collet chuck Schaublin no. 470 E:
- D = 2.0 to 3.0 mm, 0.5 mm step
- D = 4.0 to 20.0 mm, 1.0 mm step or complete set from 3.0 to 18.0 mm (set)
- SAV 439.67 470 E set
- Collet chuck Deckel no. 355 E:
- D = 0.5 to 19.0 mm
- or complete set from 3.0 to 18.0 mm (set) SAV 439.66 355 E set

APPLICATION

Cylindrical grinding, taper grinding, profile grinding, plunge grinding. The cylindrical grinding unit was developed specially for use in toolmaking, die making and mould making. Swivelling using the sine principle can be used to additionally set this unit to a vertical position. This then makes it possible to carry out surface grinding work.

DESIGN

The base plate and all wear parts are hardened. The bearing and the motor are splash water protected, IP 54. Swivelling up to 90°. Special version on request.

With spindle versions:

- Schaublin 470 E (Sch)
- Steep taper 40 (SK 40)

Compact, small space requirement. Instantly ready for use.

Control unit SAV 875.40 included in the delivery. 24 V electric motor, continuously adjustable from 0 - 200 rpm. Clockwise/anti-clockwise rotation.

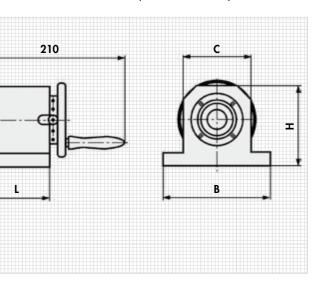
With grid holes $4 \times 90^\circ$. With grid indexing for use as index table available on request (surcharge applies). Max. direct division 24 x 15°. Sine swivel range from $0 - 90^{\circ}$. Modular system. Special taper and versions possible on request. Suitable for concentricity testing.

ACCESSORIES

- Three-jaw chuck: D = 80 mm, with flange. SAV 439.62 - 80 - taper D = 100 mm, with flange. SAV 439.62 - 100 - taper
- Four-jaw chuck: D = 80 mm, with flange. SAV 439.63 - 80 - taper
- D = 100 mm, with flange. SAV 439.63 100 taper
- Permanent magnetic circular chuck: D = 100 mm, switchable, with flange. SAV 244.03 - 100 - taper
- Collet chuck Schaublin no. 470 E: D = 2.0 to 3.0 mm, 0.5 mm step D = 4.0 to 20.0 mm, 1.0 mm step or complete set from 3.0 to 18.0 mm (set) SAV 439.67 - 470 E - set

326

Control unit SAV 875.40 W x H x L = 170 x 140 x 230



Size 200 with SK 40 taper

Size 200 with three-jaw chuck (accessory)

언

4.1

PRECISION CYLINDRICAL GRINDING UNIT SAV 434.87 With side drive

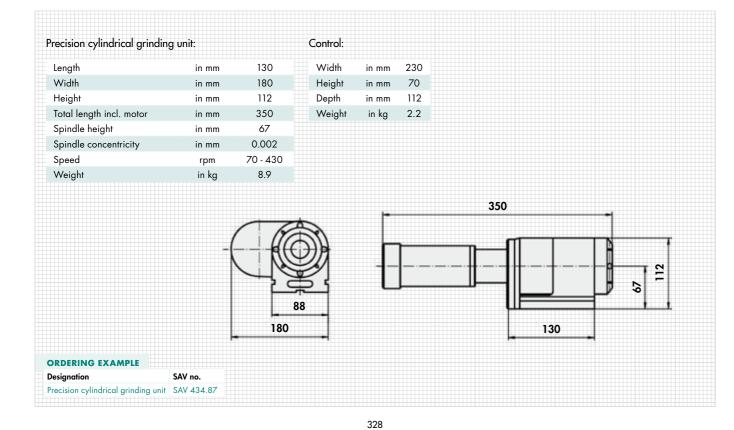
APPLICATION

For surface grinding machines in individual and smallbatch production in toolmaking, die making and mould making. Special device for profile, cylindrical and plunge grinding. Suitable for continuous operation.

DESIGN

With Deckel spindle taper 355 E. Axial angular ball bearing unit pre-tensioned without play. Maintenance-free, robust DC motor. Protection rating IP 65, splash water protected. Control unit SAV 875.41 included in the delivery. Manufactured from hardened, precision-ground steel. 20 mm free spindle sleeve clearance thanks to side drive. Planetary gears with gear ration 1 : 3. Clockwise/counter-clockwise rotation continuously adjustable from 70 to 430 rpm.

Wooden box SAV 539.23, available subject to a surcharge.


ACCESSORIES

- Three-jaw chuck: D = 80 mm. SAV 439.62 - 80 - D
- Four-jaw chuck:
- D = 80 mm. SAV 439.63 80 D
- Permanent magnetic circular chuck: D = 100 mm. SAV 244.03 - 100 - D
- Flat disc:
- D = 90 mm. SAV 439.64 90 D • Sine disc with clamping device.
- SAV 439.72 T 100 S • Collet chuck Deckel no. 355 E:
- D = 1.0 to 18.0 mm or complete set from D = 3.0 to 18.0 mm (set) SAV 439.66 - 355 E - 4.0

Workpiece samples

THREE-JAW CHUCK SAV 439.62 Adjustable version (E), fixed version (F) Diameter A = 80 mm or A = 100 mm Flange types Schaublin (Sch), Deckel (D), SK 30 (SK 30), SK 40 (SK 40) and MK 4 (MK) available ORDERING EXAMPLE Designation SAV no. - A - version - flange Three-jaw chuck SAV 439.62 - 100 - E - D FOUR-JAW CHUCK SAV 439.63 Diameter A = 80 mm or A = 100 mm

Flange types Schaublin (Sch), Deckel (D), SK 30 (SK 30), SK 40 (SK 40) and MK 4 (MK) available.

ORDERING EXAMPLE

Designation SAV no. - A - flange Four-jaw chuck SAV 439.63 - 100 - SK 30

SAV 439.62 - 439.70

COLLET CHUCK DECKEL NO. 355 E SAV 439.66

S 20 x 2, chucking range from D = 0.5 mm to 18.0 mm, 0.5 mm increments increasing. Also available in sets (Satz), consisting of 31 collet chucks from 3 to 18 mm diameter.

ORDERING EXAMPLE Designation SAV no. - type - D or Satz

Collet chuck SAV 439.66 - 355 E - 4,0

INDEX TABLES

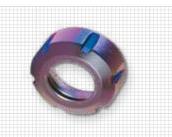
ŢŢ, 3.1

2.2

1.3

4.1

2.1


c**L** 3.2

ACCESSORIES FOR CYLINDRICAL GRINDING UNITS/ SAV 439.62 - 439.70

INDEX TABLES Special-purpose accessories

NUT FOR COLLET CHUCK 470 E SAV 439.68 For all units with Schaublin (Sch) spindle taper M40 x 1.5

ORDERING EXAMPLE Designation SAV no.

Nut for collet chuck SAV 439.68-1

LATHE CENTRE SAV 439.69

Fixed, tailstock side, for cylindrical grinding machines SAV 434.80/SAV 434.82/SAV 434.84

LATHE CENTRE SAV 439.70

Spring-loaded, tailstock side, for cylindrical grinding machines SAV 434.80/SAV 434.82/SAV 434.84

ORDERING EXAMPLE

Designation SAV no. Lathe centre SAV 439.70

SAV 439.71 / 439.73

ACCESSORIES FOR CYLINDRICAL GRINDING UNITS/ INDEX TABLES

Special-purpose accessories

LATHE CENTRE SAV 439.71 60° tip angle, with catch. Spindle side with flange. Flange types Schaublin (Sch), Deckel (D), SK 30 (SK 30) and SK 40 (SK 40) available.

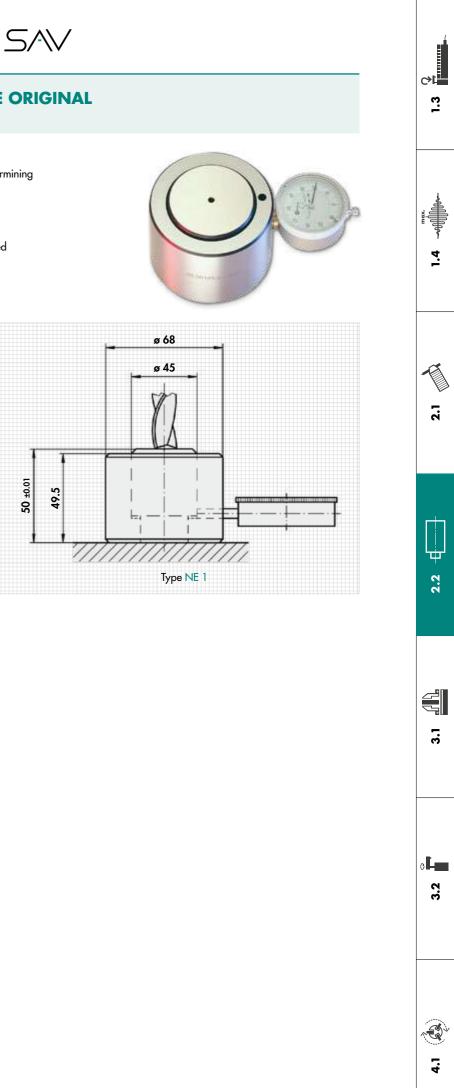
ORDERING EXAMPLE Designation SAV no. - flange Lathe centre SAV 439.71 - Sch

THREE-JAW QUICK-RELEASE CHUCK SAV 439.73 DiameterA = 80 mm or A = 110 mm. Flange types Schaublin (Sch), Deckel (D), SK 30 (SK 30), SK 40 (SK 40) and MK 4 (MK) available. Version with 6 jaws available on request.

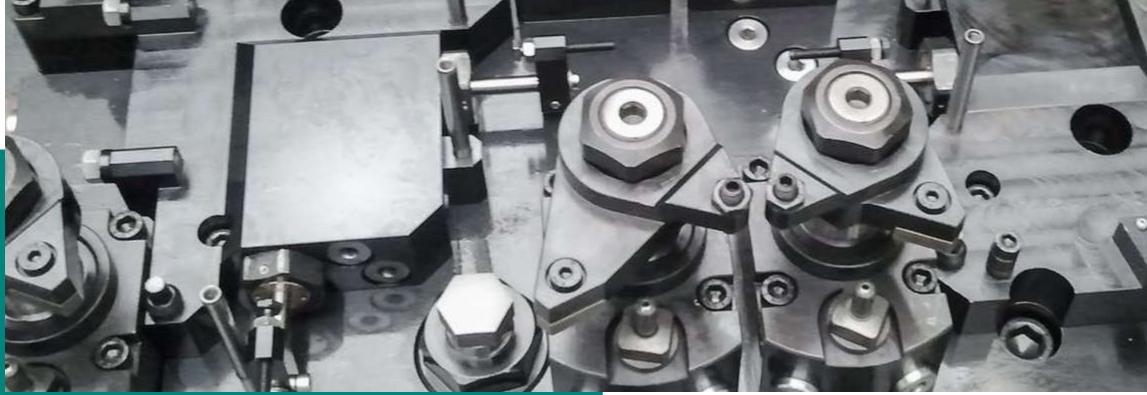
ORDERING EXAMPLE Designation SAV no. - A - flange Three-jaw quick-release chuck SAV 439.73 - 110 - SK 30

SAV 483.02

ZERO SETTER - THE ORIGINAL Vertical and horizontal


APPLICATION

For adjusting the tools (e.g. milling cutter) to "zero" and for determining the reference point of the machine spindle. No damage to tools during start-up, no feeler gauge or centre finder required.


DESIGN

Spring-loaded contact pad and housing body made of hardened tool steel, precision ground. Delivered complete with dial gauge (0.01 mm reading accuracy) in rubber storage box.

Readin	ng ad	ccuracy of the dial gauge	in mm	0.01		
Housin	ng he	eight – reference surface	in mm	49.5	т	
Height	of s	pring-loaded contact pad	in mm	51.5		
Housin	ng di	ameter	in mm	68	5	
Contac	ct po	ıd diameter	in mm	45	50 ±0.01	49.5
					ł	
ORDER	ING	EXAMPLE				
Designat	tion	SAV no type				
Zero sett	er	SAV 483.02 - NE 1				

CHAPTER 3 VICES AND FIXTURES

Im Text und bei Harald Leibold steht noch "Stationary Workholding"!!! Soll das auch geändert werden?

FOR OUR CUSTOMERS FROM ALMOST ALL AREAS OF INDUSTRY, WE ARE MORE THAN JUST A SUPPLIER OF WORKHOLD-ING SYSTEMS –

Customer requirements are our benchmark: better, safer, more efficient. Our aim is to develop optimum workholding systems using state-of-the-art engineering development and manufacturing methods.

Our range includes standard workholding elements such as precision pull-down clamps, sine tables for grinding and EDM applications.

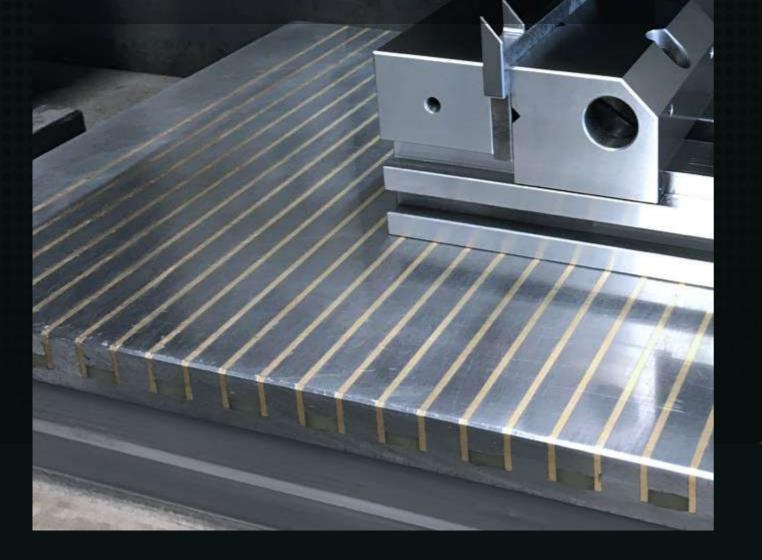
Other products from the portfolio of our partners:

- Hydraulic workholding for subtractive manufacturing
- Workpiece workholding systems, machine vices
- Vacuum workholding systems in standard and custom versions

Our development department, which specialises in the mechanical and hydraulic design of stationary workholding and fixtures, develops the best possible solutions in each case together with the customer and implements these with expert knowledge, experience, precision craftsmanship and quality awareness.

The full skill set of a supplier is revealed in the multi-faceted discipline of stationary workholding: Virtually nothing is a standard – almost everything has to be made possible. This requires more than just theoretical design engineering knowledge: It requires a feeling for different materials and their properties, an understanding of the complexity of processes and creativity for finding the most reliable solution.

WE ARE A PARTNER, A TRUSTED ALLY AND AN ENTHUSIASTIC CO-DEVELOPER.

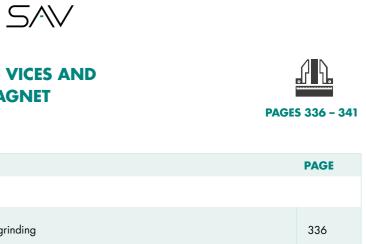

> HARALD LEIBOLD BUSINESS UNIT MANAGER STATIONARY WORKHOLDING

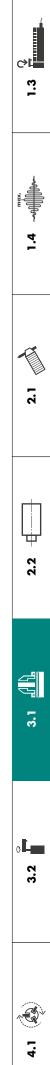
CHAPTER

STANDARD STATIONARY WORKHOLDING TOOLMAKERS VICES AND SINE TABLES WITHOUT MAGNET

3. STATIONARY WORKHOLDING

3.1 STANDARD/TOOLMAKERS VICES AND SINE TABLES WITHOUT MAGNET


	SAV ART. NO.	COMMENTS	PAGE
PRECISION PUI	L DOWN VICE		
	231.01	For precision grinding	336
	231.03	For precision grinding	337
	231.10	Stainless version	337
	NI PULL DOWN VICE		
·	231.02	Made of stainless tool steel	336
PRECISION MA			
	233.03	Standard with spindle	338
	233.10	Stainless version	338
PRECISION SIN	E TABLE		
	235.71	Swivelling around the longitudinal axis	340
-	235.72	Swivelling around longitudinal and transverse axis	341



	For precision grinding	336
	For precision grinding	337
	Stainless version	337
OWN VICE		
	Made of stainless tool steel	336
CE		
	Standard with spindle	338
	Stainless version	338
	Swivelling around the longitudinal axis	340
	Swivelling around longitudinal and transverse axis	341

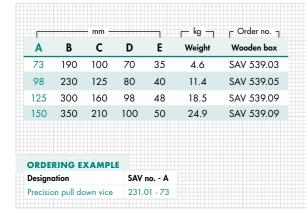
5
7
7
5
3
3
)

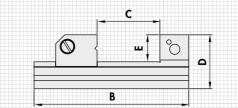
power. people. passion.

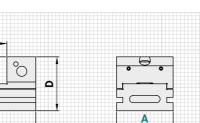
SAV 231.01

PRECISION PULL DOWN VICES

For precision workholding, accuracy version


APPLICATION


OPTIONAL


Grinding, drilling, measuring

DESIGN

- Made of tool steel
- Fully hardened HRC 58-60
- Perpendicularity 0.003/100 mm
- Parallelism: 0.003/100 mm
- Horizontally and vertically ground-in prism in movable jaws
- Maximum accuracy when engaged through a "positive locking bridge" in the lower part, measured deformation: ±0.004 mm

For precision workholding of small workpieces

OPTIONAL

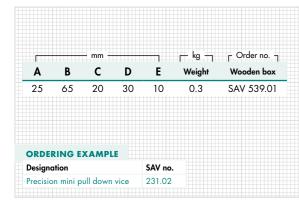
Allen key

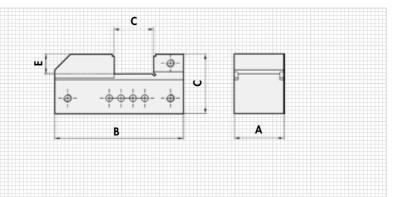
SCOPE OF DELIVERY

Wooden storage box, optional

Wooden storage box (surcharge applies)

▋∎₫♡


0000


DESIGN

- Stainless tool steel, hardened
- Fully hardened HRC 45-55
- Perpendicularity 0.004 Parallelism: 0.004
- Fastening holes on the side
- Stainless version

APPLICATION

Wire-cut and die-sinking EDM, grinding, drilling, measuring

SAV 231.03 For precision workholding, standard version

DESIGN

- Made of tool steel
- Fully hardened HRC 58-60
- Perpendicularity 0.003/100mm
- Parallelism: 0.003/100mm
- Horizontally and vertically ground-in prism in movable jaws

Α	В	С	D	E	Weight	F Order no. Wooden box
34	75	25	35	15	0.4	SAV 539.03
45	110	50	45	20	1.0	SAV 539.03
70	160	80	62	30	3.3	SAV 539.03
90	212	120	80	40	6.7	SAV 539.16
120	286	150	90	40	16.8	SAV 539.16
ORDEI	RING E	XAMPL	E			
Designo	ation		SAV	no A		
Precisio	n pull do	wn vice	231.	03 - 70		

SAV 231.10

PRECISION PULL DOWN VICES

For precision workholding, stainless version

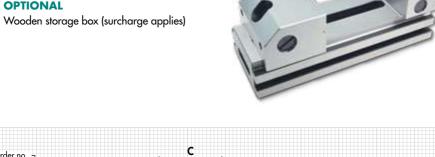
APPLICATION

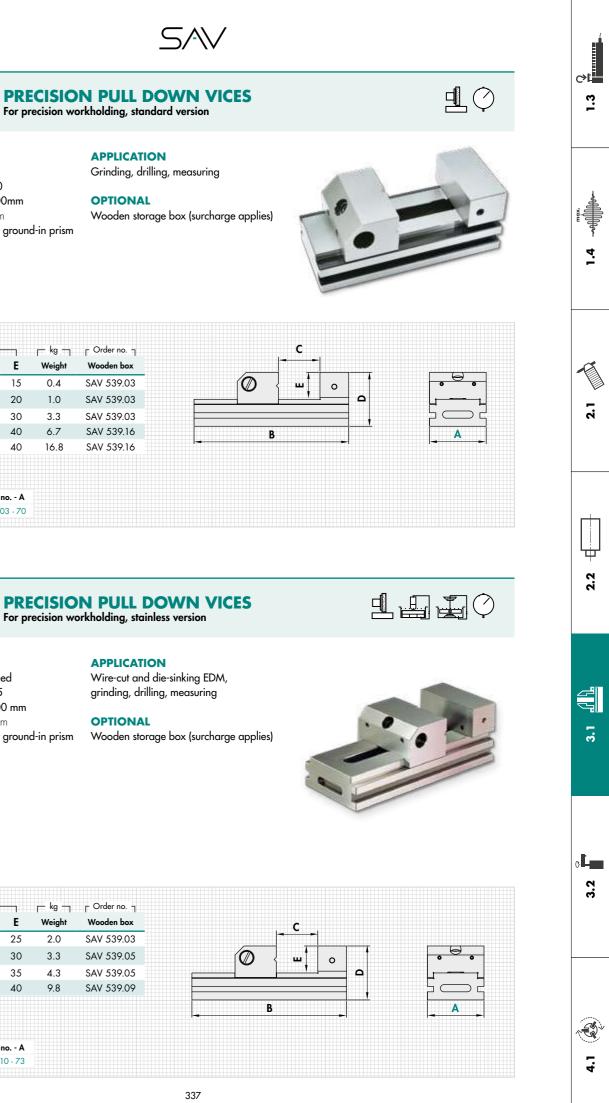
DESIGN

- Stainless tool steel, hardened
- Fully hardened HRC 45-55
- Perpendicularity 0.003/100 mm
- Parallelism: 0.003/100 mm
- Horizontally and vertically ground-in prism

OPTIONAL Wooden storage box (surcharge applies)

in movable jaws



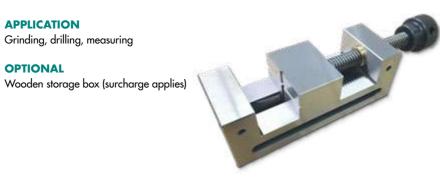

		- mm -			r kg -	
Α	В	С	D	E	Weight	Wooden box
48	150	75	50	25	2.0	SAV 539.03
63	176	90	60	30	3.3	SAV 539.05
73	190	100	70	35	4.3	SAV 539.05
98	245	125	80	40	9.8	SAV 539.09
ORDE	RING E	хамрі	F			
Design				no A		
•	on pull do	wn vice	231.	10 - 73		

APPLICATION

OPTIONAL

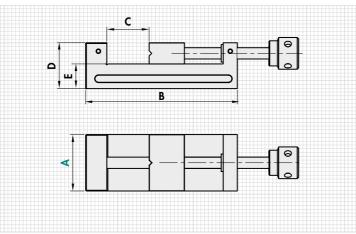
PRECISION MACHINE VICES For precision workholding, standard version

APPLICATION


OPTIONAL

Grinding, drilling, measuring

CUSTOM GRINDING FIXTURES


DESIGN

- Made of tool steel
- Fully hardened HRC 58-60
- Perpendicularity 0.005/100 mm
- Parallelism: 0.005/100 mm
- Horizontally and vertically ground-in prism in movable jaws

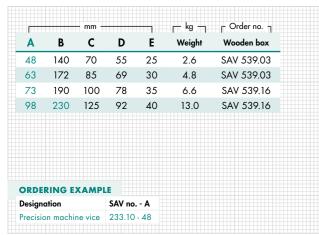
We develop and manufacture custom grinding fixtures. Please contact us for a consultation.

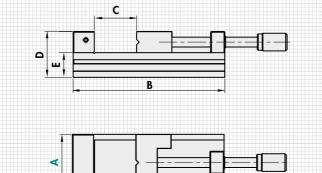
-		– mm –			r kg -	г Order no. _Л
Α	В	с	D	É	Weight	Wooden box
25	70	25	32	14	0.5	SAV 539.03
48	155	60	54	25	1.9	SAV 539.03
63	176	75	60	30	3.1	SAV 539.03
73	181	75	70	30	4.7	SAV 539.03
88	250	125	73	38	7.7	SAV 539.16
98	250	125	73	38	8.9	SAV 539.16
ORDE		ХАМРІ	.E			
Designation			SAV no.	/ no A		
Precision machine vice			233.03	- 73		

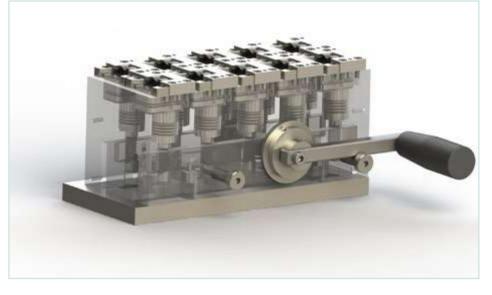
PRECISION MACHINE VICES For precision workholding, stainless version

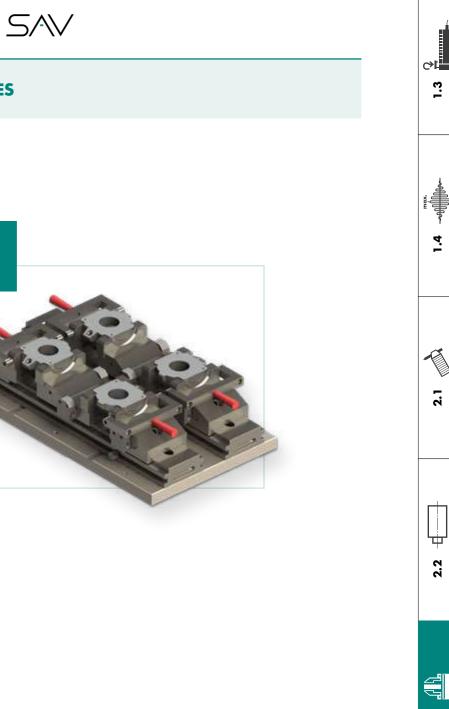
APPLICATION

OPTIONAL


Wire-cut and die-sinking EDM,


grinding, drilling, measuring

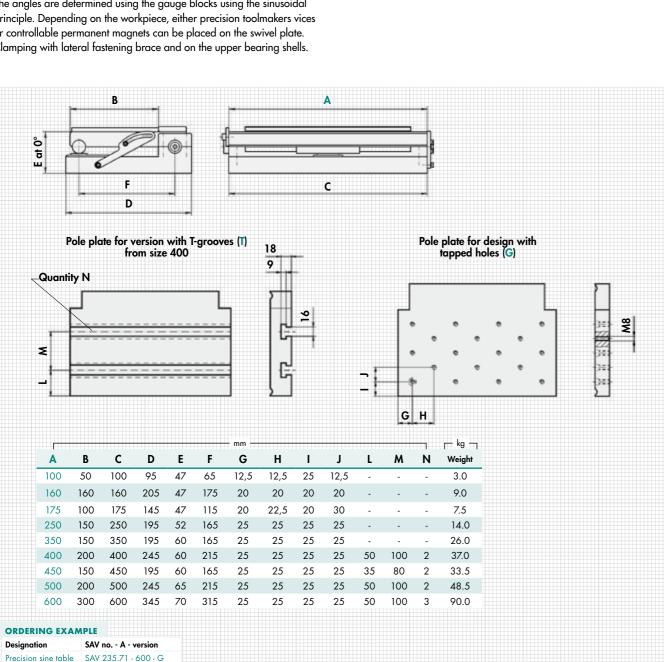

- Stainless tool steel, hardened
- Fully hardened HRC 45-55
- Perpendicularity 0.003/100 mm
- Parallelism: 0.003/100 mm
- Horizontally and vertically ground-in prism Wooden storage box (surcharge applies) in movable jaws



SAV 235.71

PRECISION SINE TABLES Swivelling around the longitudinal axis

DESIGN


Swivelling around the longitudinal axis. Sine table base unit made of steel. Hardened, burnished and precision-ground. Swivel plate designed with tapped holes M8 (G). From size 400 x 200 mm available with T-grooves (T) (subject to a surcharge). Mechanical adjustment gear alternatively available (subject to a surcharge.) This increases the height by approx. 40 mm at 0° swivel angle. Delivered in a wooden storage box, up to and including size 450 x 150 mm. With sine table with degrees/minutes in mm.

TECHNICAL DATA

- Angle accuracy: ±5 arc sec
- Plane parallelism: ±0.005/100 mm
- Gauge block at 0°: 3 mm
- Swivelling range: 0° to 45°

APPLICATION

The angles are determined using the gauge blocks using the sinusoidal principle. Depending on the workpiece, either precision toolmakers vices or controllable permanent magnets can be placed on the swivel plate. Clamping with lateral fastening brace and on the upper bearing shells.

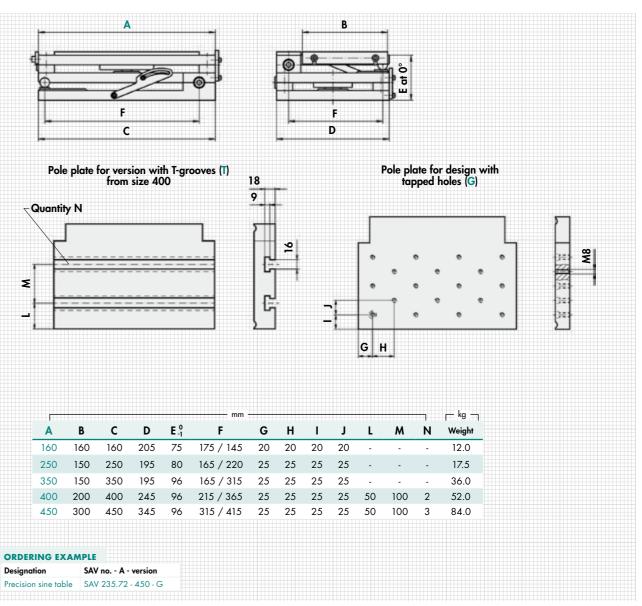
SAV 235.72

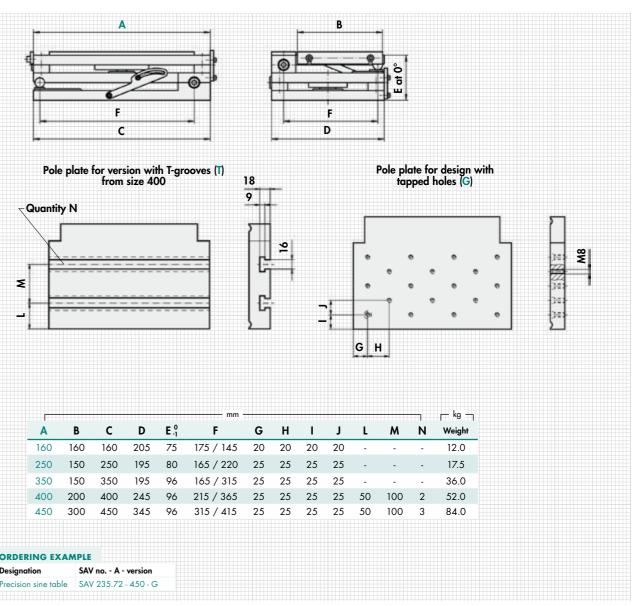
PRECISION SINE TABLES

Swivelling around longitudinal and transverse axis

DESIGN

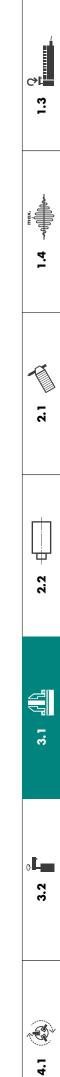
Swivelling around longitudinal and transverse axis. Sine table base unit made of steel. Hardened, burnished and precision-ground. Swivel plate designed with tapped holes M8 (G). From size 400 x 200 mm available with T-grooves (T) (subject to a surcharge). Mechanical adjustment gear alternatively available (subject to a surcharge.) This increases the height by approx. 40 mm at 0° swivel angle for each axis.

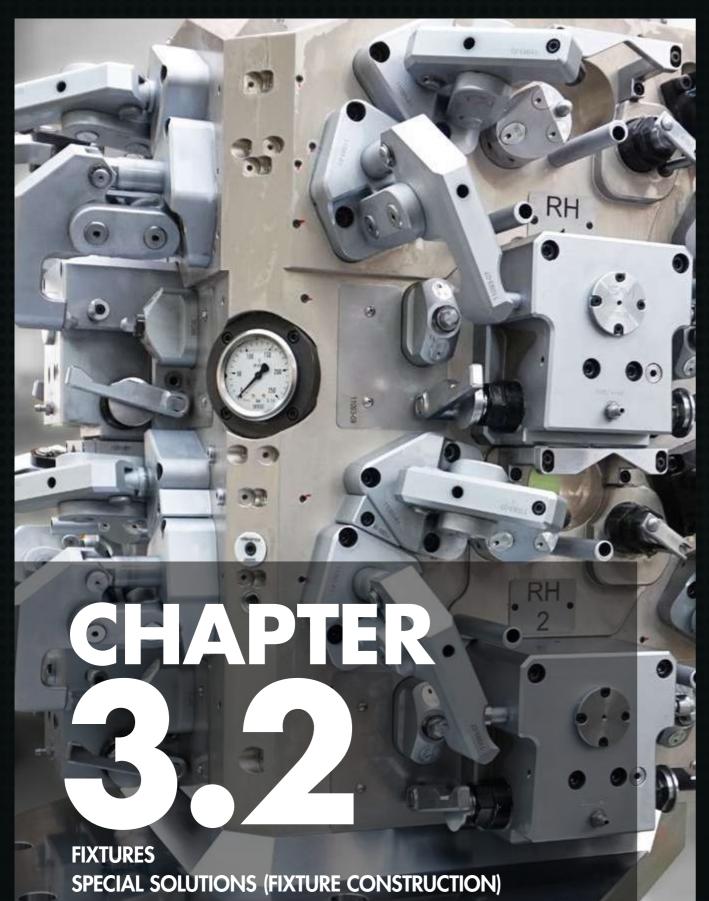

Delivered in a wooden storage box, up to and including size 400 x 200 mm. With sine table with degrees/minutes in mm.


TECHNICAL DATA

- Angle accuracy: ±5 s
- Plane parallelism: ±0.005/100 mm
- Gauge block at 0°: 3 mm
- Swivelling range, long axis: 0° to 45°
- Swivelling range, short axis: 0° to 30°

APPLICATION


The angles are determined using the gauge blocks using the sinusoidal principle. Suitable for workpieces with two work levels. Clamping is achieved with a fastening brace at the side and the upper bearing shells.



3. STATIONARY WORKHOLDING 3.2 SPECIAL SOLUTIONS (FIXTURE CONSTRUCTION)


DESIGNATION
Vacuum workholding fixture for cast magnesium par
Vacuum workholding fixture for aluminium plates
Hydraulic 2-fold workholding fixture
Lever workholding fixture with mandrel
Hydraulic 4-fold workholding fixture on dual index t
2-fold workholding fixture
Hydraulic 4-fold workholding fixture
6-fold workholding fixture
Hydraulic workholding fixture
2-fold workholding fixture
4-fold workholding fixture
4-fold workholding fixture

power. people. passion.

	PAGE
rts	344
	344
	345
	345
table	346
	346
	347
	347
	348
	348
	349
	349

VACUUM WORKHOLDING FIXTURE For cast magnesium parts

SIZE Length 1600 mm

WORKPIECE Automotive parts

APPLICATION Milling, drilling

DESCRIPTION Pneumatic centring and positioning, includes pneumatic control

HYDRAULIC DUAL WORKHOLDING FIXTURE

SIZE 800 x 400 x 400 mm

WORKPIECE Automotive parts

ŕ

Ļ

APPLICATION Milling, drilling, thread cutting

DESCRIPTION

- Swivel/tilt fixture
- 4/5-axis machining with NC index table and clamping counterbearing
- Pneumatic/hydraulic rotary feedthroughs
- Limit position scanning of the tilting positions

4.1

VACUUM WORKHOLDING FIXTURE For aluminium plates

SIZE 1100 x 750 mm

WORKPIECE

Automotive parts

APPLICATION Milling, drilling

DESCRIPTION

- Hydraulic pre-clamping
- Main workholding with vacuum

LEVER WORKHOLDING FIXTURE With mandrel

SIZE

450 x 450 x 480 mm

WORKPIECE

Flange

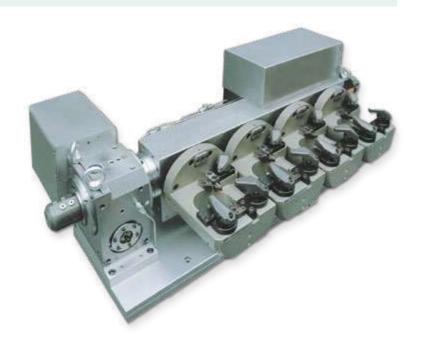
APPLICATION Milling, drilling

- Workholding fixture with special lever clamping, hydraulic
- Integrated special sliding jaws mandrel

HYDRAULIC 4-FOLD WORKHOLDING FIXTURE

On dual index table

SIZE 800 x 550 x 420 mm


WORKPIECE Aluminium housing

APPLICATION

Milling, drilling, spindles

DESCRIPTION

- 2-axle indexing unit with 4 NC axes
- 3 special swivel clamps each
- Workpiece placement monitoring using air sensoring
- Base structure made of high-strength aluminium, hard-coated

HYDRAULIC 4-FOLD WORKHOLDING FIXTURE

SIZE 620 x 400 x 350 mm

Ê

Ê

WORKPIECE Forged steel parts, automotive parts

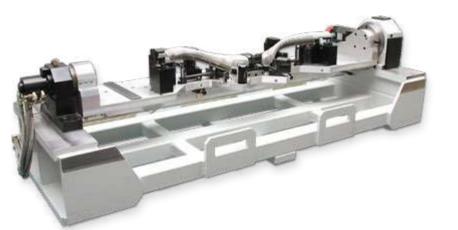
APPLICATION Milling, drilling

DESCRIPTION Placement and clamping monitoring integrated for automatic loading

DUAL WORKHOLDING FIXTURE

SIZE 2400 x 1150 x 720 mm

WORKPIECE


Automotive magnesium chassis parts

APPLICATION

Milling, drilling, spindles

DESCRIPTION

- NC index table (NC axis 360°)
- Counterbearing with hydraulic clamping and multiple rotary feedthrough for hydraulics and pneumatics
- Workpiece placement monitoring using air sensoring Basic fixture designed as a welded structure with
- square tube profiles

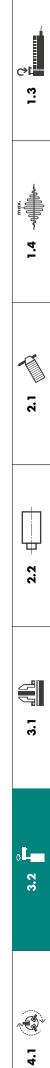
6-FOLD WORKHOLDING FIXTURE

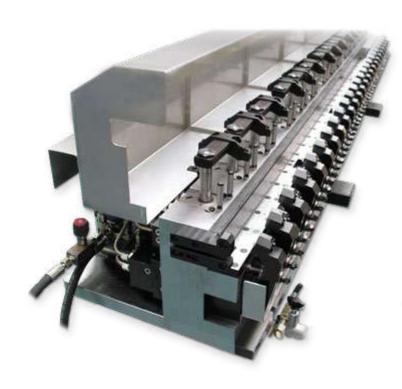
SIZE

950 x 450 x 450 mm

WORKPIECE Cast aluminium parts

APPLICATION Milling, drilling, spindles


- Workpieces pressed down with swivel-clamping pendulum claws
- Dynamic pressure scan of the open position of the contact cylinder
- Lateral "floating" clamping of the workpieces, self-locking workholding


HYDRAULIC WORKHOLDING FIXTURE

SIZE 2000 x 400 x 400 mm

WORKPIECE Racks

APPLICATION Assembly

DESCRIPTION Used for assembling rack elements in linear guideways

4-FOLD WORKHOLDING FIXTURE

SIZE 630 x 450 x 350 mm

Ê

Ê

WORKPIECE Cast aluminium parts, workholding position 1

APPLICATION Milling, drilling, spindles

DESCRIPTION

workpieces

- Workholding with special swivel clamps, hydraulic
- X/Y aligned workholding units for doublespindle machining centre
- Exchangeable parts for different Hydraulic support elements

DUAL WORKHOLDING FIXTURE

SIZE 396 mm diameter

WORKPIECE

Cast aluminium parts

APPLICATION Milling, drilling, spindles

DESCRIPTION

- Workholding with swivel clamps, hydraulic
- Spring-loaded conical bolts for positioning
- Workpiece scanning using air sensor bolts
- Hydraulic support elements
- Chuck body made of high-strength aluminium, hard-coated

4-FOLD WORKHOLDING FIXTURE

SIZE

630 x 450 x 350 mm

WORKPIECE

Cast aluminium parts, workholding position 2

APPLICATION Milling, drilling, spindles

- Workholding with special swivel clamps, hydraulic
 X/Y aligned workholding units for double-spindle
- machining centre
- Exchangeable parts for different workpieces
- Hydraulic support elements

CHAPTER 4 FIXTURE CONSTRUCTION FOR CIRCULAR CHUCKS

Whether round or cubic workpieces, whether conventional or cycle-controlled machines: Our rotary workholding products ensure minimum setup times, maximum efficiency and flexibility.

We offer a broad range of jaw chucks and accessories, clamping chucks, mandrels and vacuum workholding systems as standard and special versions.

Regardless of the task at hand - our work is always

- absolutely economically viable and focused on practical value
- workpiece and process oriented
- highly precise
- fast and flexible thanks to in-house development and production

This ensure SAV workholding solutions for turning, grinding and milling

- Low wear and maintenance
- Intelligent combinations and automation options
- Adaptable to any spindle, specifically for your machine
- Well thought-out as an intelligent complete solution

FROM STANDARD TO COMPLEX INTEGRATION INTO EXISTING APPLICATIONS: WE CAN FIND THE IDEAL SOLUTION FOR ANY REQUIREMENT.

TRUST IN THE EXPERTS WITH SAV!

KLAUS KRAYL BUSINESS UNIT MANAGER ROTARY WORKHOLDING

S/W

CHAPTER / / SPECIAL SOLUTIONS FOR CIRCULAR CHUCKS

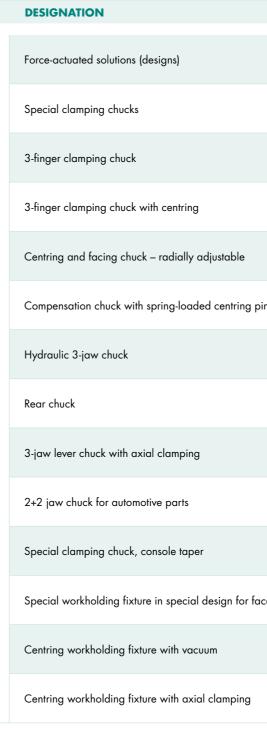
4. ROTARY WORKHOLDING 4.1

To

N.

O

A

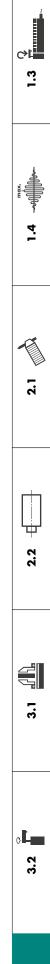

in.

0

Ŵ

Ţ

5


power. people. passion.

SPECIAL SOLUTIONS FOR CIRCULAR CHUCKS

	PAGE
	354
	355
	356
	356
	357
ins – hydraulic ball stud	357
	358
	358
	359
	359
	360
ce side machining	360
	361
	361

FINGER CHUCK

 Precision workholding with point contact/clamping, no flattening of uneven parts

R

SPECIAL CLAMPING CHUCK For pipeline elements

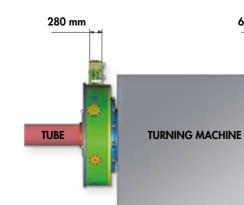
SIZE Diameter: 1140 mm

WORKPIECE Pipes for the petroleum industry

APPLICATION

Pipe end machining (squaring, chamfering and thread cutting)

DESCRIPTION


- Front and rear chuck for special turning machines for pipe end machining
- Hydraulic 12-point clamping chuck, with changeover from centred to compensating action
- Front chuck additionally with integrated pre-centring function on one plane in front of the clamping jaws
- Centring jaws move fully back behind the level surface of the chuck body after centring

TECHNICAL DATA

- Clamping range: 6 1/2" 16"
 Clamping force: 40000 daN
- Max. speed: 500 rpm

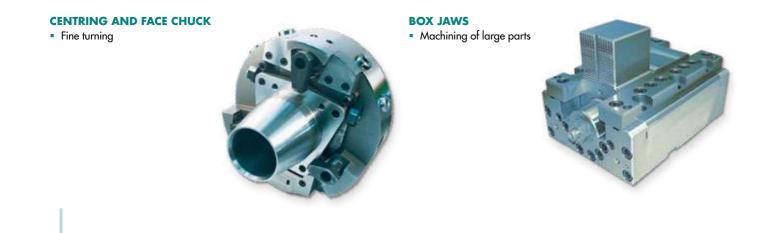
Force and accuracy – tailored to workpiece and process

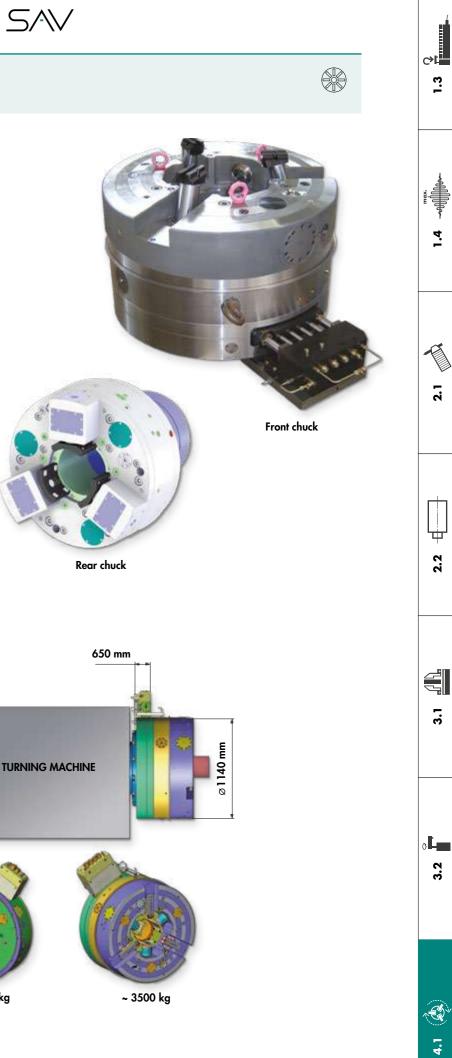
~ 1600 kg

COMPENSATION CHUCK

BOLT CHUCKS

Extreme machining


Shaft workholding with centre offset



6-JAW COMPENSATION LEVER СНИСК Low-deformation chucking

of rings

3-FINGER CLAMPING CHUCK With bolt

CENTRING AND FACE CHUCK Radial displacement

SIZE Diameter: 630 mm

WORKPIECE Sheet metal housings

APPLICATION Turning (inner and outer contours), drilling

DESCRIPTION

Modular kit for flexible workholding of part families

3-FINGER CLAMPING CHUCK With centring system

SIZE Diameter: 315 mm

WORKPIECE

SIZE

Diameter: 315 mm

WORKPIECE

APPLICATION

DESCRIPTION

3-finger clamping chuck (angled finger) Axial tension disc of the chuck is

aluminium, hard-coated and non-magnetic

engaged using an electro magnetChuck released with compression springsChuck body made of high-strength

Slip rings

Grinding

Flat lock washers

APPLICATION Axial and radial cylindrical grinding

DESCRIPTION

- 3-finger clamping chuck (axial finger)
- 3 synchronised, clamping profile pins for positioning in the tooth gap
- Fast conversion to 2 workpieces
- Workpiece with hardening distortion: offsets are aligned

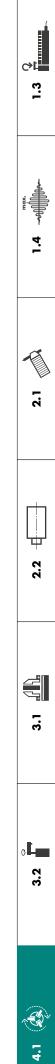
COMPENSATION CHUCK WITH SPRING-LOADED CENTRING PINS Hydraulic ball stud

SIZE

Diameter: 200 mm

WORKPIECE

Aluminium discs


APPLICATION

Face and external turning

DESCRIPTION

- Low-deformation chucking with hydraulic compensation
- Accommodation in positioning pins

HYDRAULIC 3-JAW CHUCK Compensating

SIZE

Diameter: 315 mm Clamping range: 150 – 225 mm Clamping force: 14000 daN

WORKPIECE Pipes for the petroleum industry

APPLICATION

Centring of tubes before (compensating) chucking on special turning machines for tube end machining

DESCRIPTION

 Hydraulic 3-jaw lever chuck, external and internal clamping

3-JAW LEVER CHUCK With axial clamping

SIZE

Diameter: 420 mm Height: 180 mm

WORKPIECE

Cast aluminium covers

APPLICATION Turning

DESCRIPTION

- 2 conical spring-loaded tapers
- 3 clamping levers with axial clamping
- Integrated rinsing nozzles through the spindle of the turning centre

REAR CHUCK Centred and compensating

SIZE

Diameter: 630 mm Clamping range: 2 3/8" - 7" Clamping force: 18000 daN Max. speed: 1000 rpm

WORKPIECE Pipes for the petroleum industry

APPLICATION Pipe end machining (squaring, chamfering and thread cutting)

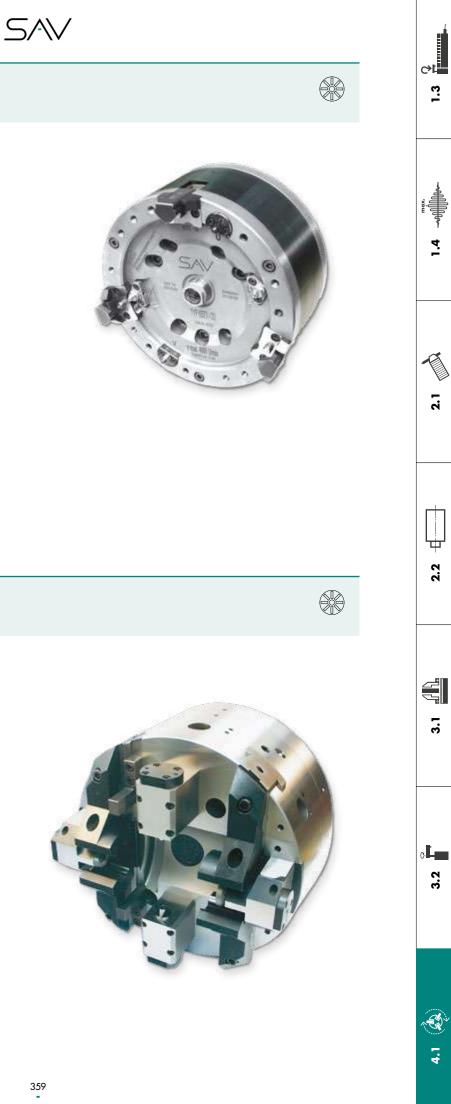
DESCRIPTION

• Hydraulic clamping chuck, with changeover, centred and compensating action

2+2 JAW CHUCK for automotive parts

SIZE

Diameter: 400 mm


WORKPIECE

Differential housing

APPLICATION Turning the spherical shape

DESCRIPTION

 2+2 jaw chuck with axial pressure element and radial alignment unit

358

SPECIAL CLAMPING CHUCK Console taper

CENTRING WORKHOLDING FIXTURE With vacuum

SIZE Diameter: 250 mm

WORKPIECE Automotive parts

APPLICATION

Turning

DESCRIPTION

• Hydraulic clamping on lateral flange face

SIZE 700 x 700 x 420 mm

WORKPIECE Carbon fibre brake discs

APPLICATION Milling, drilling, spindles

DESCRIPTION

- 3-jaw centring from inside and outside
 1 pneumatic alignment unit (indexer)
- Workpiece support rings with vacuum pockets
- Extraction channels with carbon fibre dust

SPECIAL WORKHOLDING FIXTURE IN SPECIAL DESIGN For face side machining

SIZE Diameter: 280 mm Height: 500 mm

WORKPIECE

Shafts, injector bodies

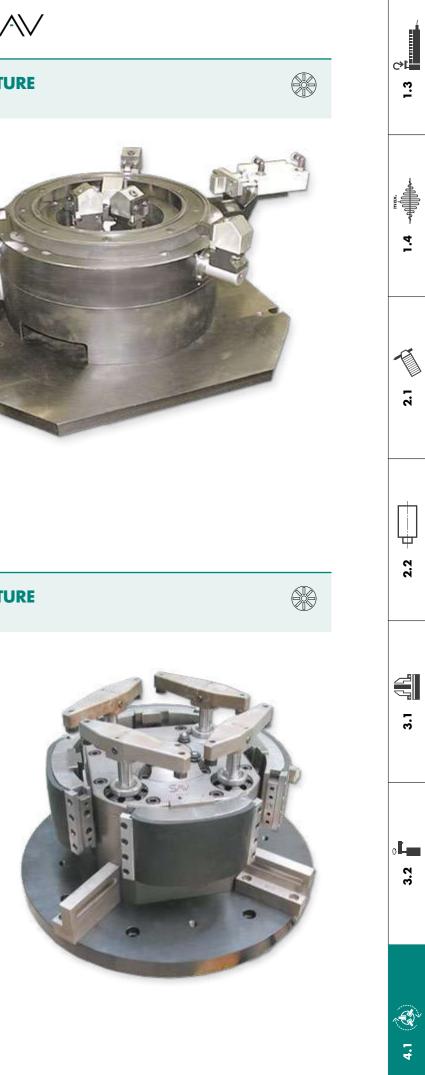
APPLICATION Grinding the flat surface

DESCRIPTION

- Workholding device for clamping rotation-symmetrical workpieces
- Fixture flap for easier inserting of the workpiece

CENTRING WORKHOLDING FIXTURE With axial clamping

SIZE


600 x 600 x 410 mm

WORKPIECE

Cast rings

APPLICATION Milling with slotting cutter set

- 4-jaw centring from inside
- 4-axial swivel clamps with pendulum claws
- Quick-change jaws
- Quick-change workpiece support

CHAPTER 5 GENERAL INFORMATION

SAV 240.83.....

SAV 240.84.....

SAV 240.85.....

SAV 240.88.....

SAV 240.89.....

SAV 240.90.....

SAV 241.06

ELECTRO HOLDING MAGNETS

SAV 241.29

INDEX

PERMANENT MAGNETIC PALLET

SAV 220.30	. 44
SAV 220.31	. 45
SAV 220.32	. 45

PRECISION TOOLMAKERS VICES AND PULL-DOWN CLAMPS

SAV 231.01	
SAV 231.02.	
SAV 231.03.	
SAV 231.10.	
SAV 233.03.	
SAV 233.10.	

PRECISION SINE TABLES WITHOUT

```
MAGNET
```

SAV 235.71	340
SAV 235.72	.341

HOLDING MAGNETS, MAGNETIC CORES, **OFFICE MAGNETS**

SAV 240.01	107
SAV 240.02	
SAV 240.02	
SAV 240.04	
SAV 240.06	
SAV 240.07	
SAV 240.08 SAV 240.09	
SAV 240.09	
SAV 240.10	
SAV 240.11	
SAV 240.12	
SAV 240.13	
SAV 240.12	
SAV 240.17	
SAV 240.17	
SAV 240.19	
SAV 240.17	
SAV 240.33	
SAV 240.34	
SAV 240.35	
SAV 240.36	
SAV 240.38	
SAV 240.41	
SAV 240.42	
SAV 240.45	
SAV 240.46	
SAV 240.50	202
SAV 240.55	203
SAV 240.56	204
SAV 240.70	205
SAV 240.71	206
SAV 240.72	205
SAV 240.73	207
SAV 240.74	207
SAV 240.80	208

ELECTRO PERMANENT MAGNETIC CHUCKS, RECTANGULAR

SAV 243.70	84
SAV 243.71	86
SAV 243.72	88
SAV 243.73	90
SAV 243.76/SAV 220.76.	
SAV 243.77	
SAV 243.77-RAIL	100
SAV 243.78	
SAV 243.79	104
SAV 243.80	105

SAV 244.01.....

SAV 244.03......51

SAV 244.43.....72

SAV 244.70......110 SAV 244.71.....112

SAV 244.72.....116 SAV 244.73.....118 SAV 244.74.....119 SAV 244.76.....120

SAV 245.02.....132 SAV 245.04.....134 SAV 245.05.....135 SAV 245.06.....136 SAV 245.07......137

SAV 245.09.....139 SAV 245.10140

SAV 245.40.....141

SAV 245.41 141

SAV 245.44.....142

ELECTRO PERMANENT MAGNETIC

CIRCULAR CHUCKS

PRECISION SINE TABLES

SAV 245.08.

. 50

.. 158

. 208

. 209

. 209

..210

..210

.. 211

.. 200

PERMAN

BLOCKS	
SAV 242.01	
SAV 242.02	150
SAV 242.05	
SAV 242.07	151
SAV 242.11	
SAV 242.12	152

PERMANENT MAGNETIC V BLOCKS

SAV	242.21	153
SAV	242.22	154
SAV	242.25	154
SAV	242.29	155
SAV	242.31	155

UPRIGHT MAGNETIC CHUCKS

SAV 242.90	46
SAV 242.91	46
SAV 242.92	.106

SAV 243.01	47
SAV 243.07	47
SAV 243.10	48
SAV 243.11	49
SAV 243.15	153

SAV 243.40	62
SAV 243.41	64
SAV 243.42	66

PERMANENT MAGNETIC CIRCULAR

CHUCKS

NENT	MAGNETIC	CLAMPING	

		SAV 244.0652	2
01	150		
)2	150	SAV 244.10 54	1
)5		SAV 244.11	1
)7			
1	151	ELECTRO MAGNETIC CIRCULAR CHUCKS	;
2	152	SAV 244.40	3

AV 242.21	153
AV 242.22	154
AV 242.25	154
AV 242.29	155
AV 242.31	155

SAV 242.90	
SAV 242.91	46
SAV 242.92	

PERMANENT MAGNETIC CHUCKS, RECTANGULAR

SAV 243.01	
SAV 243.07	47
SAV 243.10	
SAV 243.11	49
SAV 243.15	153

ELECTRO MAGNETIC CHUCKS, RECTANGULAR

243.40	62
243.41	64
243.42	66

SAV	246.4	۱	 •••	

MAGNETIC WELDING AIDS

SAV 246.50	178
SAV 246.54	179
SAV 246.60	180
SAV 246.61	181

.. 178

TOP PLATES, CLAMPING BLOCKS AND ACCESSORIES

SAV 248.01	
SAV 248.02	147
SAV 248.03	148
SAV 248.05	52
SAV 248.40	148
SAV 248.60	149
SAV 248.61	149
SAV 248.70	

CURRENT TRANSMISSION ELEMENTS

SAV 248.81	77
SAV 248.83	77
SAV 248.84	125
SAV 248.85	125
SAV 248.86	
SAV 248.90	55
SAV 248.91	55
SAV 248.92	
SAV 248.94	

PRECISION DRESSING UNITS

SAV 401.01	
SAV 434.01	
SAV 434.02	
SAV 434.05	
SAV 434.07	

PRECISION CYLINDRICAL GRINDING UNITS

SAV 434.80	324
SAV 434.81	325
SAV 434.83	326
SAV 434.85	327
SAV 434.87	328
SAV 439.62	329
SAV 439.63	329
SAV 439.66	329
SAV 439.68	330
SAV 439.69	330
SAV 439.70	330
SAV 439.71	330
SAV 439.73	330
SAV 482.70	

ADJUSTMENT AND MEASURING DEVICES

SAV 483.02 SAV 486.04 SAV 486.40
LIFTING MAGNETS

SAV 531.01..... SAV 531.20 SAV 531.42 SAV 531.92 SAV 532.03 SAV 532.11.....

POLARITY REVERSAL CONTROL UNITS

DEMAGNETISERS

SAV	890.02
SAV	890.42
SAV	890.43
SAV	890.70
SAV	890.71

 		 		 331
 		 		 174
 		 		 175

																1	ć	Ś	6	
		•		•			•		•			•		•		1	ć	5	8	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1	Ć	5	7	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1	Ć	5	8	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1	8	3	2	
																1	8	3	3	

5, 124 5, 124
74
122
175

																1	7	7	2	
																			2	
•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	1	7	7	3	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1	7	7	3	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1	7	7	4	

GENERAL TERMS AND CONDITIONS

Last updated: June 2018

GENERAL INFORMATION, SCOPE 1.

- 1.1. The legal relationships between the seller (SAV GmbH) and the customer ("buyer" in the following) are based on these General Terms and Conditions ("T&C" in the following). The T&C apply only to natural or legal entities or legally responsible limited companies which, at the time of entering into the contract, are exercising their commercial or self-employed professional activity (definition of company owner as per art. 14 par. 1 BGB [German Civil Code]) or to legal entities of public law or public separate funds.
- 1.2. The T&C apply in particular to contracts on the sale and/or delivery of movable property ("goods" in the following) without consideration of whether the seller produces these goods itself or purchases them from sub-suppliers (art. 433, 650 BGB) and to contracts for work and services (art. 631 BGB). The T&C apply in their current version as a framework agreement also to future contracts on the sale and/or delivery of movable objects with the same buyer, without the seller having to reference the T&C in every individual case. In case of any changes to the T&C, the seller will inform the buyer immediately. Such changes will come into force between seller and buyer if the buyer does not object to the validity within one month after receipt of the change notification and the seller has included information about the consequence of failure to object in the change notification.
- 1.3. Deviating, conflicting or supplementary General Terms and Conditions from the buyer will become part of the contract only if and insofar as the seller has expressly consented to their validity in writing. This requirement for consent also applies if the seller executes the delivery to the buyer outright while being aware of conflicting conditions or buyer's conditions deviating from these conditions.
- 1.4. Any individual agreements with the buyer made in individual cases (including subsidiary agreements, supplements and amendments) always take priority over these T&C.
- 1.5. Legally relevant declarations and notices which must be made by the buyer towards the seller after finalising of a contract (e.g. deadlines, notices of defect, declaration of termination or reduction) reguire the written form to become effective (excludes emails).
- **1.6.** Information on the validity of legal provisions is only of clarifying character. Even without such a clarification, the legal provisions therefore apply, in as far as they are not directly changed or expressly excluded in these T&C.

2. QUOTATION and QUOTATION DOCUMENTS, TERMINATION

2.1. The seller's quotations are not binding and without obligation. This also applies if the seller provides the buyer with catalogues, images, technical documentation (e.g. drawings, plans, calculations, numerical simulations, references to DIN standards), other product descriptions or documents – also in electronic form – for which the seller reserves right of ownership and copyrights. The buyer must not make these objects accessible to third parties, disclose them. use them himself or through third parties or copy them, neither as such nor their content. Upon the seller's request, the buyer must return these objects to the seller in full and destroy any copies made, if these are no longer required by the seller as part of regular business or if negotiations do not lead to finalizing of a contract.

- 2.2. When the buyer orders the goods, this is considered as a binding tender to contract
- 2.3. Acceptance can be declared either in writing (e.g. with an order confirmation) or by delivery of the goods to the buyer. Failure to respond to an order does not constitute acceptance under any circumstances.
- 2.4. The seller has the right to reject acceptance of an order by the buyer, in particular if it becomes evident that the seller's claim for payment from the individual contract would be at risk due to the buyer's lack of capacity for payment at the time of accepting the order. This is the case in particular if the customer's financial standing is rated as "high risk" (rating level 7 or lower) by Euler Hermes Forderungsmanagement Deutschland GmbH or if another reason as defined by art. 321 par. 1 BGB is present.
- 2.5. A verification of the stipulations in an order with respect to copyright or other intellectual property right infringements must be conducted by the buyer. If the buyer finds that the seller's stipulations or their implementation infringe the intellectual property rights of third parties, the seller can withdraw from the contract or – in case of a continuing obligation relationship or an already partially executed contract - terminate the order without notice.
- 2.6. The seller has the right to terminate the contract without notice if there is a good reason for this. A good reason is present in particular if it becomes evident after entering into the contract that the seller's contractual payment claims are at put at risk by the customer's capacity for payment. Legal reasons for refusal to perform, termination and withdrawal remain unaffected.

3. PRICES AND PAYMENT TERMS

- 3.1. Unless otherwise agreed in individual cases, the seller's prices current at the time of entering into the contract apply. The prices apply ex warehouse including packaging. The prices are exclusive of the current statutory added-value tax.
- 3.2. For shipment sales (section 5.1 of these T&C), the seller is additionally responsible for paying the transport/shipping costs ex warehouse and the costs of any transport insurance requested by the buyer. Any customs duties, fees, taxes and other public levies must be paid by the seller.
- 3.3. The purchase price is due and payable within 5 days of shipping of the goods. For contracts with a delivery value of over 5,000.00 EUR, however, the seller has the right to demand a payment on account of 1/3 of the purchase price. The payment on account is due and payable within 5 days of the invoice date.
- 3.4. The seller will be considered in default of the payment when the payment period shown above has expired. During the default period, interest must be paid on the purchase price at the applicable legal default interest rate at the time, but at last to the amount of 9 per cent above the applicable base rate of the European Central Bank at the time. The seller's claim to the commercial default inter est (art. 353 HGB [German Commercial Code]) remains unaffected towards business persons. The seller reserves the right to assert claims for additional damage caused by default.

- 3.5. The seller is entitled to offsetting or retention rights only insofar as its claim has been established in a legally binding manner or is uncontested. In case of defects on the delivery, the seller's reciprocal rights, in particular as per section 7.6, sentence 2 of these T&C, remain unaffected
- 3.6. If it becomes evident after entering into the contract that the seller's claim to the purchase price is at risk due to the buyer's lack of capacity for payment (e.g. due to an application for initiating insolvency proceedings), the legal provisions give the seller the right to a refusal to fulfil the obligation and – after fixing of a time limit, if applicable - the right to withdraw from the contract. For contracts concerning the production of non-exchangeable goods (custom products), the seller can declare withdrawal immediately; the legal provisions on dispensing with the fixing of a time limit remain unaffected.

4. DELIVERY DEADLINE AND DEFAULT IN DELIVERY

- 4.1. The delivery deadline must be agreed upon individually or must be set by the seller with reasonable discretion upon acceptance of the order. If this is not the case, the delivery deadline is 8 weeks from the date of entering into the contract. Delivery is "ex works".
- 4.2. Partial deliveries are permitted to a reasonable extent. These are invoiced separately.
- 4.3. If the seller cannot comply with binding delivery deadlines due to reasons for which it is not responsible (e.g. non-availability of the product/service, any interruption of operations, impossibility of manufacturing the goods on the common machines, difficulties in procuring material or energy sources, transport delays, strike, lawful lockouts, lack of workforce, lack of energy sources or raw materials, difficulties in procuring the required official approvals, official measures, or incorrect, late or failed deliveries from suppliers), the seller must inform the buyer of this without delay and at the same time notify the buyer of the expected new delivery deadline. If the product/service is not available within the new delivery deadline, the seller has the right to withdraw from the contract wholly or in part if the seller informs the buyer about the non-availability within the new delivery deadline without delay; any counterperformance already provided by the buyer must be immediately reimbursed by the seller. Non-availability of the product/service in this sense is in particular a failure of the sub-supplier to supply the seller in time if the seller has entered into a congruent covering transaction, neither the seller nor the sub-supplier are at fault or the seller is not obligated to procure in the individual case.
- 4.4. The legal provisions determine when the seller defaults on the delivery. In any case, however, a reminder notice from the buyer is required.
- 4.5. The legal requirements notwithstanding, the buyer is only entitled to withdraw from the contract if the seller is responsible for the failure to comply with the delivery deadline and/or if the buyer had set the seller a reasonable period of grace which has expired.
- 4.6. The buyer's rights as per section 8 of these T&C and the seller's legal rights, in particular in case of an exclusion of the obligation to perform (e.g. due to impossibility or unreasonableness of the performance and/or subsequent performance) remain unaffected.

367

5. DELIVERY, PLACE OF DELIVERY, TRANSFER OF RISK. ACCEPTANCE, DELAY IN ACCEPTANCE

- 5.1. Delivery is ex warehouse. Place of delivery is the seller's location. At the buyer's request and at the buyer's expense and risk, the goods will be sent to a different destination (shipment sales). Unless agreed otherwise, the seller has the right to determine the shipping method (in particular forwarding company, shipping route, packagina) independently.
- 5.2. Any tools, moulds, devices, models, assembly parts and other production equipment (jointly "tools") to be provided must be handed over to the seller free of charge, free of extra costs and in good time, without the seller becoming liable for their deterioration or destruction. The seller has the right to dispose of, at the buyer's expense, any tools or paid-for goods which have not been collected within a reasonable period set by the seller.
- 5.3. If an acceptance as per the legal provisions is required, the buyer must accept the completed work, which is ready for acceptance, upon request or upon notification of completion by the seller. If the buyer refuses the acceptance, it must notify the seller of the defects without delay, but within of 15 working days after provision of the work at the latest.
- 5.4. If the buyer does not refuse the acceptance within the above period listing at least one defect, the work will be considered as accepted. This also applies if the work is commissioned or put into use. The buyer must not refuse acceptance in case of insignificant defects.
- 5.5. The risk of accidental destruction and accidental deterioration of the goods is transferred with handover to the buyer at the latest.
- 5.6. For shipment sales, however, the risk of accidental destruction and accidental deterioration of the goods as well as the risk of delay passes already with delivery to the forwarder, the carrier or the person or institution otherwise designated for executing the shipping (the start of the loading process is decisive). If an acceptance has been agreed, this is decisive for the transfer of risk. If the buyer defaults on the acceptance, this is equivalent to handover or acceptance
- 5.7. If the buyer has defaulted on the acceptance or omits to perform a cooperation task or if the delivery from the seller is delayed for other reasons for which the buyer is responsible, the seller has the right to demand compensation for the damage caused by this, including additional expenditure (e.g. storage costs). For this, the seller will charge a flat-rate compensation of 0.25 % of the invoice total for each full calender week, starting with the expiration of the delivery deadline or - if no delivery deadline was set - with the notification of readiness for shipping of the goods, but to a maximum of 10.00 % of the purchase price of the goods or of the wages. The compensation will not be omitted in case of a final non-acceptance
- 5.8. The proof of a higher damage and the seller's legal claims (in particular compensation for additional expenditures, adequate reimbursement, cancellation) remain unaffected; the flat-rate payment, however, must be offset against further claims for damages or compensation for expenditures.
- 5.9. The buyer is entitled to prove that only a substantially lesser damage than the above flat-rate (section 5.5) or no damage at all was sustained by the seller.

GENERAL TERMS AND CONDITIONS

6. **RETENTION OF TITLE**

- 6.1. The seller retains the title in the goods until receipt of all current and future claims from the contract of sale and an ongoing business relationship with the buyer.
- 6.2. If the buyer acts in breach of the terms of the contract, in particular by failing to pay the due purchase price and by refusing the acceptance, the seller has the right to withdraw from the contract as per the legal provisions and/or to demand return of the goods based on the retention of title. If the seller demands return of the goods, this does not at the same time include a declaration of with drawal from the contract, unless the seller has expressly declared this in writing. The seller rather has the right to simply demand return of the goods and reserve the right to withdrawal. If the buyer does not pay the due purchase price, the seller has the right to assert these rights only if it had previously set a reasonable payment deadline for the buyer without success or if such a deadline is expendable as per the legal provisions.
- 6.3. The buyer has the duty to take good care of the goods subject to retention of title. In particular, the buyer has the duty to sufficiently insure these against fire, water and theft damage to the value as new at its own expense. If maintenance and inspection work is required, the buyer must carry these out in good time at its own expense.
- 6.4. The goods subject to retention of title must not be mortgaged or transferred as a safety to third parties before complete payment has been made. In case of seizure or other interventions by third parties, the buyer must notify the seller in writing immediately.
- 6.5. The buyer has the right to resell and/or process the goods subject to retention of title as part of regular business routine. The following provisions apply additionally in this case:
 - 6.5.1. The seller must transfer to the buyer already at this time all claims which arise for him from the reselling towards its purchasers or third parties, regardless of whether the goods have been sold without or after processing. This constitutes acceptance of the transfer by the buyer. The buyer remains authorised to collect this claim even after the transfer. The seller's authority to independently collect the claim remains unaffected by this. The seller, however, undertakes not to collect the claim as long as the buyer is meeting its payment obligations towards the seller, has not defaulted on its payments and has not filed for initiating insolvency proceedings and no other defect has occurred in its capacity for payment. If this is the case, however, the seller can demand that the buyer discloses the ceded claims and their debtors to the seller, provides all information required for collection, hands over the associated documents and notifies the debtors (third parties) of the transfer
 - 6.5.2. Processing or reshaping of the goods subject to retention of title by the buyer must always be conducted for the seller as the manufacturer as per art. 950 BGB. The buyer's expectancy for the goods continues in the reshaped object. If the goods subject to the retention of title are processed jointly with other objects not belonging to the seller, the seller acquires part ownership in the new object at the ratio of the invoice value of the seller's goods to the other processed objects at the time of processing. Apart from that, the same applies to the object resulting from the processing as to the goods delivered subject to retention of title.

- 6.5.3. If the goods subject to the retention of title are inseparably joined, mixed or blended with other objects not belonging to the seller, the seller acquires part ownership in the new object at the ratio of the invoice value of the seller's goods to the other joined, mixed or blended objects at the time of processing. Mixing or blending. If the joining, mixing or blending is conducted in such a way that the buyer's object can be regarded as the main object, it must be considered as agreed that the buyer transfers part ownership to the seller at the respective ratio. The seller must accept this transfer. Apart from that, the same applies to the object resulting from the joining, mixing or blending as to the goods delivered subject to retention of title
- 6.5.4. The buyer must keep in its custody the sole ownership or part ownership in an object resulting as per sections 6.5.2 and 6.5.3 for the seller as the indirect owner free of charge.
- 6.6. The buyer undertakes to release the securities to which the seller is entitled at the seller's request insofar as the realisable value of the seller's securities exceeds the claims to be secured by more than 10.00 %; the selection of the securities to be released is incumbent on the seller.

7. WARRANTY

- 7.1. The legal provisions apply to the buyer's rights in case of material defects and legal deficiencies (including defective delivery and short delivery as well as inexpert assembly/installation or inadequate assembly/installation instructions), unless specified otherwise in the following. In all cases, the special legal provisions remain unaffected in case of final delivery of the goods to a consumer (supplier recourse as per art. 445a, 445b, 477,478 BGB), insofar as the right to compensation is not affected.
- 7.2. The seller's warranty is primarily based on the agreement made on the condition and quality of the goods. The agreement on the condition and quality of the goods are the product descriptions designated as such (also from the manufacturer) which were handed over to the buyer before the order or which were included in the contract
- 7.3. Insofar as the condition and quality was not agreed upon, an assessment as to whether a defect is present or not must be made based on the legal regulations (art. 434 par. 1 sent. 2 and 3 BGB). The seller accepts no liability, however, for public statements by the manufacturer or other third parties (e.g. advertising statements). The seller also accepts no liability for defects caused by unsuitable or inexpert use, incorrect assembly/installation or startup by the buyer or third parties, normal wear and tear, or incorrect or negligent handling. Beyond this, the seller also accepts no liability for defects which result from inexpert changes made without the seller's consent or from repair work carried out by the buyer or third parties.
- 7.4. The buyer's warranty rights require that the buyer has correctly met its examination and notification obligations as per art. 377, 381 HGB. If a defect becomes evident during the examination or subsequently, the seller must be notified of this in writing immediately. The notification is regarded as having been issued immediately if it occurs within 2 weeks from the occurrence of the defect, whereby the timely dispatch of the notification is sufficient for meeting this deadline. If the buyer fails to notify the seller of the defect, the goods will be regarded as approved. Independent of this examina-

tion and notification obligation, the buyer must report any obvious defects – i.e. defects which are apparent with correct examination - (including defective delivery and short delivery) in writing within 2 weeks from delivery, whereby here as well the timely dispatch of the notification is sufficient for meeting this deadline. If the buyer does not carry out the correct and timely examination and/or notification of defects, the seller's liability for the defect which was not reported or not reported in due time will be excluded. The goods will then be regarded as approved.

- 7.5. If the delivered object is defective, the seller can initially choose whether to provide subsequent performance by eliminating the defect (rectification) or by delivering an object free from defects (substitute delivery). The seller's right to refuse subsequent performance subject to the legal requirements remains unaffected.
- 7.6. The seller has the right to make the owed subsequent performance dependent on the buyer paying the due purchase price.
- 7.7. The buyer, however, has the right to retain a part of the purchase price at the appropriate ratio of the defect. The buyer must grant the seller the time and opportunity required for the owed subsequent performance; in particular the buyer must hand over the nonconforming goods for verification purposes. In case of a substitute delivery, the buyer must return the nonconforming object to the seller as per the legal provisions. Subsequent performance includes neither de-installation of the nonconforming object nor re-installation if the seller was originally not obligated to carry out installation, unless the seller is responsible for the defect.
- **7.8.** The seller is responsible for paying the expenditures, in particular transport, travel, labour and materials costs, if a defect is indeed present. If the buyer's demand for elimination of a defect proves to be unjustified, however, the seller can demand compensation for the incurred costs from the buyer. The seller only pays the costs for de-installation and re-installation if and insofar as it is liable for paying damages for the defect.
- 7.9. In urgent cases, e.g. if operational safety is at risk or if excessively high damage must be averted, the buyer has the right to eliminate the defect independently and to demand compensation from the seller for the expenditures objectively required for this. The seller must be notified of such independent remedial actions immediately, beforehand if possible. The right to eliminate defects independently does not apply if the seller would be entitled to refuse the respective subsequent performance as per the legal provisions.
- 7.10. If the subsequent performance has failed or if a grace period set by the buyer for the subsequent performance has expired unsuccessfully, the buyer has the right to choose whether to withdraw from the contract of sale or to demand an appropriate reduction of the purchase price. No right to withdrawal applies, however, in case of an insignificant defect.
- 7.11. The buyer can claim for damages or compensation for futile expenditures only as per section 8 of these T&C and these are otherwise excluded

368

8. OTHER LIABILITIES

- 8.1. Unless stipulated otherwise in these T&C including the following provisions, the seller is liable as per the applicable legal provisions in case of infringement of contractual and non-contractual obligations
- 8.2. The seller is only liable to pay damages regardless of the legal basis – in case of intent and gross negligence. In case of ordinary negligence, the seller is liable only
 - 8.2.1. for damage resulting from injury to life, body or health
 - 8.2.2. for damage resulting from the breach of an essential contractual duty (duty where fulfilment only enables correct execution of the contract in the first place and for which the other party to the contract regularly trusts or can regularly trust that it will be fulfilled); in this case, however, liability is limited to compensation for the foreseeable, typically occurrina damaae
- 8.3. The liability limitations resulting from section 8.2 do not apply insofar as the seller has fraudulently concealed or intentionally caused a defect or has accepted a guarantee for the quality and condition of the goods, as well as for any buyer's claims based on product liability law. The buyer can only withdraw from or cancel the contract due to breach of duty if the seller is responsible for the breach of duty. A free right of cancellation for the buyer (in particular as per art. 650, 648 BGB) is excluded. Apart from that, the legal requirements and legal consequences apply.
- 8.4. Insofar as the seller's liability is excluded or limited, this also applies to the personal liability of the seller's employees, legal representatives and agents.
- 8.5. The buyer bears the full burden of proof for the presence of the defect. Art. 477, 478 par. 1 BGB remain unaffected in case of a final sale in the delivery chain to a consumer.
- 8.6. The buyer also beyond the duties incumbent on it as per art. 254 BGB – is obligated to alert the seller to the risk of an unusually high damage and to make all reasonable efforts to avert or mitiaate damaae.

9. INTELLECTUAL PROPERTY RIGHTS

9.1. As per this section 9, the seller is responsible for the goods being free from intellectual property rights or copyrights by third parties, insofar as the goods were not manufactured based on the buyer's specifications (drawings, design, plans. etc.). Each party to the contract must immediately notify the other party in writing if any claims are made towards it due to the infringement of such rights.

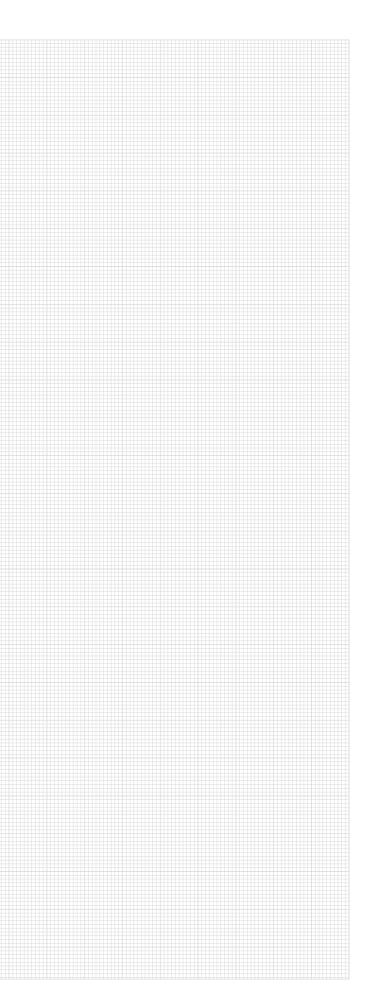
GENERAL TERMS AND CONDITIONS

NOTES

- **9.2.** If the goods infringe on a commercial property right or copyright of a third party, the seller must change or replace the goods as per the seller's choosing and at its own cost in such a way that no third-party rights are infringed any longer while the goods continue to fulfil the contractually agreed functions or the seller must provide the buyer with the usage right by entering into a license agreement. If the seller is unable to do this within a reasonable period of time, the buyer has the right to withdraw from the contract or to reduce the purchase price by a reasonable amount. Any claims for damages by the buyer are subject to the restrictions of section 8 of these T&C.
- **9.3.** If products from other manufacturers delivered by the seller cause any legal breaches, the seller must choose to either assert its claims against the manufacturers and sub-suppliers on account of the buyer or transfer these to the buyer. In these cases, claims against the seller as per section 9 exist only if a legal enforcement of the claims listed above against the manufacturers and sub-suppliers failed or is expected to fail, e.g. due to insolvency. However, as per further specification of section 8, the seller owes compensation for damage or expenditures only if it is responsible for the defective title.

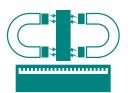
10. CONFIDENTIALITY

- **10.1.** Each party to the contract must use any documents (this also includes samples, models and data) and knowledge gained from the business relationship only for the jointly pursued purposes and keep these confidential from third parties with the same diligence as its own comparable documents and knowledge if the other party to the contract designates these as confidential or has an obvious interest in their secrecy.
- **10.2.** This duty starts from initial receipt of the documents or knowledge and ends 36 months after the end of the business relationship.
- **10.3.** The duty does not apply to documents and knowledge which are generally known or were already known to the party to the contract at the time of receipt without being obligated to secrecy, or which are subsequently transferred by a third party authorised to pass these on, or which were developed by the receiving party to the contract without using secret documents or knowledge from the other party.


11. LIMITATION OF TIME

11.1. Deviating from art. 438 par. 1 no. 3, 634a par. 1 no. 3 BGB, the limitation period for claims from material defects and legal deficiencies is one year after handover. If an acceptance is agreed or required by law, the limitation period starts with the acceptance. In case of claims based on injury to life, body or health and in cases of intent and gross negligence, the statutory limitation period is maintained.

- 11.2. If the goods are a building or an object which was used for a building according to its usual mode of use and caused the building's defect (construction material), the limitation period as per the legal provisions is 5 years from handover (art. 438 par. 1 no. 2, 634a par. 1 no. 2 BGB). Special legal regulations for rights in rem of third parties (art. 438 par. 1 no. 1 BGB), in case of fraudulent behaviour by the seller (art. 438 par. 3 BGB) and for claims in supplier regress in case of final delivery to a consumer (art. 445b, 478 par. 2 BGB) remain unaffected. Instead of the limitation periods as per art. 445b BGB, however, only the limitation period as per the previous section applies if the final sale in the delivery chain is not a consumer goods purchase.
- 11.3. The above limitation periods also apply to contractual and pre-contractual or non-contractual claims for compensation by the buyer which are based on a defect on the goods, unless the application of the regular statutory limitation period (art. 195, 199 BGB) would result in a shorter limitation in the individual case. The limitation periods from the product liability law remain unaffected in all cases. The statutory limitation periods exclusively apply to any other claims for compensation by the buyer as per section 8.


12. GENERAL PROVISIONS

- 12.1. These T&C and the relationship between seller and buyer are solely governed by the law of the Federal Republic of Germany, unless agreed otherwise. The application of international uniform law, in particular the United Nations Convention of 11 April 1980 on Contracts for the International Sale of Goods, is excluded. Assumptions and effect of ownership subject to section 6 are subject to the laws at the respective location of the object, insofar as it renders the choice in favour of German law invalid or ineffective.
- **12.2.** Nürnberg (Germany) is the exclusive also international place of jurisdiction for all disputes arising directly or indirectly from the contractual relationship.

power. people. passion.

Vices and Fixtures

Circular Chucks

SAV GmbH Gundelfinger Straße 8 · 90451 Nuremberg · Germany Phone: +49 (0) 911 94 83 0 · Fax: +49 (0) 911 480 142 6 info@sav.de · www.sav.de